АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Экстремум функции

Читайте также:
  1. II. Основные задачи и функции
  2. III. Предмет, метод и функции философии.
  3. IV. Конструкция бент-функции
  4. Ms Excel: мастер функций. Логические функции.
  5. V2: ДЕ 29 - Введение в анализ. Предел функции на бесконечности
  6. V2: ДЕ 32 - Дифференциальное исчисление функции одной переменной. Производная
  7. V2: ДЕ 35 - Дифференциальное исчисление функции одной переменной. Производные высший порядков
  8. V2: ДЕ 39 - Интегральное исчисление функции одной переменной. Приложения определенного интеграла
  9. V2: Функции исторической науки
  10. VIII. ФУНКЦИИ НАУЧНОГО ИССЛЕДОВАНИЯ
  11. XVIII. ПРОЦЕДУРЫ И ФУНКЦИИ
  12. А) ПЕРЕДАЧА НА РУССКОМ ЯЗЫКЕ ФУНКЦИИ АРТИКЛЯ

При значении аргумента функция имеет максимум если в некоторой окрестности точки (возможно весьма малой) выполнено неравенство

Аналогично, при значении аргумента функция имеет минимум если в некоторой окрестности точки (возможно весьма малой) имеет место неравенство

Максимум или минимум функции называется экстремумом функции (или экстремальным значением функции). А те значения аргумента, при которых достигаются экстремумы функции, называются точками экстремума функции (соответственно: точками максимума или точками минимума функции). Из определения следует, что экстремум функции, вообще говоря, имеет локальный характер - это наибольшее или наименьшее значение функции по сравнению с близлежащими значениями ее. Минимум функции может быть больше максимума - подобно тому, как впадина в горах может иметь бóльшую отметку над уровнем моря, чем небольшая вершина. На рисунке при и - максимумы, при и - минимумы. Минимум при больше максимума при Из определения максимума и минимума следует: 1) Функция, определенная на отрезке, может достигать максимума и минимума только при значениях заключенных внутри рассматриваемого отрезка. 2) Максимум и минимум функции могут быть, а могут и не быть наибольшим и наименьшим значениями функции на рассматриваемом отрезке. На рисунке наибольшее значение функция принимает в точке а наименьшее в точке


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |


При использовании материала, поставите ссылку на Студалл.Орг (0.005 сек.)