АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Стационарное уравнение Шредингера. В теории операторов важную роль играют так называемые собственные состояния операторов

Читайте также:
  1. V2: Волны. Уравнение волны
  2. V2: Применения уравнения Шредингера
  3. V2: Уравнение Шредингера
  4. Адиабатический процесс. Уравнение адиабаты (Пуассона). Коэффициент Пуассона.
  5. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  6. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  7. В простом случае обычное дифференциальное уравнение имеет вид
  8. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  9. Волна вероятности. Уравнение Шредингера
  10. Волновая функция.Уравнение Шредингера
  11. Волновое уравнение для упругих волн и его общее решение.
  12. Волновое уравнение для электромагнитных волн

В теории операторов важную роль играют так называемые собственные состояния операторов. Это такие состояния, которые при действии данного оператора меняются тривиальным образом: умножаются на некоторое число. Это число называется собственным значением оператора, соответствующим данному собственному состоянию. Чтобы найти собственные состояния и собственные значения какого-то оператора, надо решить уравнение

где индекс п отличает одно решение от другого. Набор величин Ап, то есть набор собственных значений оператора, определяет его свойства.

Рассмотрим в качестве примера операцию поворота вокруг некоторой оси z. Роль состояний играют здесь обычные радиусы-векторы. Очевидно, что при повороте все векторы меняются, кроме параллельных оси. Это и есть собственные векторы оператора поворота вокруг оси z, причем соответствующее собственное значение равно единице. Аналогичны выводы для поворота вокруг осей х и у. Произвольный поворот можно получить комбинацией этих трех поворотов. Соответственно, любой радиус-вектор можно представить как линейную комбинацию трех собственных векторов i, j, k. Ситуация с другими операторами по сути ничем не отличается от описанной: зная набор собственных состояний Yn(t, r), любое другое состояние Y(t, r) можно получить с помощью линейной комбинации, то есть с помощью принципа суперпозиции:

  (4.17)

Связь математики с физикой реализуется в следующем правиле.



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)