АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Явление переноса в термодинамически неравновесных системах

Читайте также:
  1. SCАDA-системы: основные блоки. Архивирование в SCADA-системах. Архитектура системы архивирования.
  2. Аварии на коммунальных системах жизнеобеспечения
  3. Агрегатные состояния и термодинамические фазы
  4. Аддиктивное поведение подростков и молодежи как виктимологическое явление.
  5. АНАЛИЗ ПЕРЕНОСА
  6. Анализ технических требований чертежа, выявление технологических задач и условий изготовления детали
  7. Антиномии языка как проявление его сложности
  8. Антиутопия как явление литературы ХХ века
  9. Арифметические действия в двоичной и шестнадцатеричной системах счисления
  10. Асимметрия в арх. ее проявление в решении композиции внутренних пространств.
  11. Астма как условнорефлекторное явление и неправильное дыхательное поведение
  12. Билет32Лазеры – это источники когерентного света, в работе которых использовано явление индуцированного излучения.

В термодинамических неравновесных системах возникают особые необратимые процессы, в результате которых происходит пространственный перенос энергии, массы и импульса.

Если газ находится в состоянии равновесия, макроскопические параметры в различных частях системы одинаковы. Однако если в произвольной части системы один из параметров изменился, т. е. система стала неравновесной, возникнут процессы, стремящиеся вернуть систему в равновесное состояние, и эти процессы называют явлением переноса.

В зависимости от того, какой параметр изменяется, различают:

теплопроводность — перенос энергии;

диффузия — перенос массы;

вязкость (или внутреннее трение) — перенос импульса.

Теплопроводность

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е. выравнивание температур.

Диффу́зия (лат. diffusio — распространение, растекание, рассеивание, взаимодействие) распространение молекул или атомов одного вещества между молекулами или атомами другого, приводящее к самопроизвольному выравниванию их концентраций по всему занимаемому объёму

2. Диффузия. Явление диффузии заключается в том, что происходит самопроиз­вольное проникновение и перемешивание частиц двух соприкасающихся газов, жид­костей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.
Явление диффузии для химически однородного газа подчиняется закону Фука:
(48.3)
где jmплотность потока массы — величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х,D— диффузия (коэффициент диффузии), d r/ d x— градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки jm и d r/ d x противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинети­ческой теории газов,
(48.4)
Коэффициент диффузии в жидкости увеличивается с температурой, что обусловлено «разрыхлением» структуры жидкости при нагреве и соответствующим увеличением числа перескоков в единицу времени.

В твёрдом теле могут действовать несколько механизмов диффузии: обмен местами атомов с вакансиями(незанятыми узлами кристаллической решётки), перемещение атомов по междоузлиям, одновременное циклическое перемещение нескольких атомов, прямой обмен местами двух соседних атомов и т.д. Первый механизм преобладает, например, при образовании твёрдых растворов замещения, второй — твёрдых растворов внедрения.

Коэффициент диффузии в твёрдых телах крайне чувствителен к дефектам кристаллической решётки, возникшим при нагреве, напряжениях, деформациях и др. воздействиях. Увеличение числа дефектов (главном образом вакансий) облегчает перемещение атомов в твёрдом теле и приводит к росту коэффициента диффузии. Для коэффициента диффузии в твёрдых телах характерна резкая (экспоненциальная) зависимость от температуры. Так, коэффициент диффузии цинка в медь при повышении температуры от 20 до 300°С возрастает в 1014 раз.

Законы диффузии

Нам следует изучить перенос газов через барьер между альвеолярным воздухом и кровью. Этот перенос происходит за счет диффузии. Всего лишь 40 лет назад некоторые физиологи считали, что в легких происходит секреция кислорода в капилляры, т. е. его перемещение против градиента парциального давления. Такой процесс, требующий затрат энергии, протекает в плавательном пузыре рыбы. Однако в дальнейшем с помощью более точных методик было показано, что все газы в легких проходят через альвеолярную стенку исключительно путем пассивной диффузии.
Диффузия веществ через ткани описывается законом Фика, согласно которому скорость переноса газа через слой ткани прямо пропорциональна площади этого слоя и разнице парциального давления газа по обе его стороны и обратно пропорциональна толщине слоя. Площадь альвеолярно-капиллярного барьера в легких огромна (50—100 м2), а толщина его менее 0,5 мкм, т. е. по своим размерам он прекрасно подходит для диффузии.

 

 

Закон внутреннего трения Ньютона

 

Предположение о линейной зависимости силы внутреннего трения (молекулярной вязкости) от производной скорости V по нормали к плоскости движения Здесь τ — сила внутреннего трения, отнесенная к единице поверхности (напряжение трения); η—коэффициент вязкости, определяемый в случае газа его природой и температурой, а в случае капельной жидкости — также и давлением.

Вопрос


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)