АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Асимптоты графика функции

Читайте также:
  1. II. Основные задачи и функции
  2. III. Предмет, метод и функции философии.
  3. IV. Конструкция бент-функции
  4. Ms Excel: мастер функций. Логические функции.
  5. V2: ДЕ 29 - Введение в анализ. Предел функции на бесконечности
  6. V2: ДЕ 32 - Дифференциальное исчисление функции одной переменной. Производная
  7. V2: ДЕ 35 - Дифференциальное исчисление функции одной переменной. Производные высший порядков
  8. V2: ДЕ 39 - Интегральное исчисление функции одной переменной. Приложения определенного интеграла
  9. V2: Функции исторической науки
  10. VIII. ФУНКЦИИ НАУЧНОГО ИССЛЕДОВАНИЯ
  11. XVIII. ПРОЦЕДУРЫ И ФУНКЦИИ
  12. А) ПЕРЕДАЧА НА РУССКОМ ЯЗЫКЕ ФУНКЦИИ АРТИКЛЯ

Прямая называется асимптотой графика функции , если расстояние от некоторой точки , лежащей на графике, до этой прямой стремится к нулю при стремлении хотя бы одной из координат точки к бесконечности.

Существуют два вида асимптот: вертикальные и наклонные.

 

Прямая называется вертикальной асимптотой графика функции , если

 

или . (4.3.1)

Вертикальных асимптоты ищутся среди точек разрыва.

 

Пример 4.3.1. Найти вертикальные асимптоты графиков функций:

1) 2)

Решение.

1) Вертикальные асимптоты ищутся среди точек разрыва, т. е. в нашем случае рассмотрим .

– вертикальная асимптота.

2) Очевидно, вертикальных асимптот нет, т. к. нет точек разрыва.

Прямая называется наклонной асимптотой графика функции , если существуют конечные пределы:

левая наклонная асимптота при правая наклонная асимптота при (4.3.2)
, , , .

Замечание. В некоторых случаях функция асимптотически приближается к одной и той же прямой при и , тогда наклонная асимптота будет одна при .

При прямая примет вид и наклонная асимптота будет горизонтальной.

Пример 4.3.2. Найти наклонные асимптоты графиков функций

1) 2)

Решение.

1)

Соответственно,

Таким образом, имеется правая (при ) наклонная асимптота . Аналогично можно показать, что эта же прямая является наклонной асимптотой и при .

Таким образом, при так и при функция асимптотически приближается к одной и той же прямой (рис. 4.3.1).

Рис. 4.3.1

2)

Соответственно,

Таким образом, имеется правая (при ), т. к. горизонтальная асимптота .

Следовательно, при асимптот не будет ( рис. 4.3.2).

Рис. 4.3.2

Пример 4.3.3. Найти асимптоты графиков функций

1) 2)

Решение.

1) Очевидно, вертикальных асимптот нет, т. к. нет точек разрыва.

Исследуем поведение функции при , т. е. найдём наклонные (горизонтальные) асимптоты .

;

Соответственно, .

Таким образом, – правая наклонная асимптота.



Соответственно,

Таким образом, – левая наклонная асимптота (рис.4.3.3).

Рис. 4.3.3

2) Функция определена в интервалах .

Так как

,

,

то только прямая является вертикальной асимптотой.

 

Исследуем поведение функции при , т. е. найдём наклонные (горизонтальные) асимптоты .

Соответственно,

Таким образом, существует правая наклонная асимптота .

Соответственно,

Таким образом, правая наклонная асимптота (рис. 4.3.4).

Рис. 4.3.4




При использовании материала, поставите ссылку на Студалл.Орг (0.007 сек.)