АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Линейная оболочка системы векторов. Теоремы о базисе и размерности линейной оболочки

Читайте также:
  1. I. Линейная алгебра
  2. I. Формирование системы военной психологии в России.
  3. I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
  4. II. Органы и системы эмбриона: нервная система и сердце
  5. II. Цель и задачи государственной политики в области развития инновационной системы
  6. II. Экономические институты и системы
  7. III. Линейная алгебра
  8. III. Мочевая и половая системы
  9. III. Органы и системы эмбриона: пищеварительная система
  10. IV Структура АИС. Функциональные и обеспечивающие подсистемы
  11. IV. Механизмы и основные меры реализации государственной политики в области развития инновационной системы
  12. IV. Органы и системы эмбриона: дыхательная и др. системы

Пусть - система векторов из векторного пространства V над полем P.

Определение 2: Линейной оболочкой L системы A называется множество всех линейных комбинаций векторов системы A. Обозначение L(A).

Можно показать, что для любых двух систем A и B,

1. A линейно выражается через B тогда и только тогда, когда (1)

2. A эквивалентна B тогда и только тогда, когда L(A)=L(B). (2)

Доказательство следует из предыдущего свойства

3. Линейная оболочка любой системы векторов является подпространством пространства V.

Доказательство

Возьмём любые два вектора х и у из L(A) имеющие следующие разложения по векторам из A:

Проверим выполнимость условий 1) и 2) критерия:

1. так как представляет собой линейную комбинацию векторов системы A.

2. так как тоже представляет собой линейную комбинацию векторов системы A.

Рассмотрим теперь матрицу Линейная оболочка строк матрицы A называется строчечным пространством матрицы и обозначается Lr(A). Линейная оболочка столбцов матрицы A называется столбцовым пространством и обозначается Lc(A). Обратите внимание, что при строчечное и столбцовое пространство матрицы A являются подпространствами разных арифметических пространств Pn и Pm соответственно. Пользуясь утверждением (2), можно придти к следующему выводу:

Теорема 3: Если одна матрица получена из другой цепочкой элементарных преобразований, то строчечные пространства таких матриц совпадают.

Теорема. Размерность ЛО L(X1,X2...Xn) векторов (X1,X2...Xn) равна максимальному числу линейнонезависимых векторов в системе векторов (X1,X2...Xn). В частности если все векторы (X1,X2...Xn) линейнонезависимы, то размерность ЛО равна числу векторов, а сами эти векторы образуют базис

 

Билет


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)