АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Рассмотрим первый случай

Читайте также:
  1. I-IY Государственные Думы – первый опыт российского парламентаризма.
  2. III.2.1. Первый (ионийский) этап в древнегреческой натурфилософии. Учение о первоначалах мира. Миропонимание пифагореизма
  3. Боэций: последний из римлян и первый из схоластов
  4. В первый раз
  5. В прошлом году российские операторы сотовой связи получили лицензии на предоставление услуг связи третьего поколения. Но это- лишь первый шаг к построению мобильной сети 3G.
  6. В России появляется первый государственный венчурный фонд
  7. Вопрос первый.
  8. Вопрос первый. Теоретические и методологические основы постиндустриализма.
  9. Вопрос37. Первый и второй замечательный пределы и следствия из них.
  10. Вопрос: Эволюция новоевропейского мировоззрения в осмыслении общественных изменений. Первый и второй этапы.
  11. ГЛАВА 1. ПЕРВЫЙ РАЗ.
  12. Глава 1. Первый уровень медитации.

Применяемые на практике численные методы решения СЛАУ делятся на две группы - прямые и итерационные.

В прямых (или точных) методах решение системы получают за конечное число арифметических действий. К ним относятся известное правило Крамера нахождения решения с помощью определителей, метод последовательного исключения неизвестных (метод Гаусса) и его модификации, метод прогонки и другие. Сопоставление различных прямых методов проводится обычно по числу арифметический действий, необходимых для получения решения. Прямые методы являются универсальными и применяются для решения систем до порядка 103. Отметим, что вследствие погрешностей округления при решении задач на ЭВМ прямые методы на самом деле не приводят к точному решению системы.

Прямые методы решения СЛАУ. К прямым (или точным) методам решения СЛАУ относятся алгоритмы, которые в предположении, что вычисления ведутся без округлений, позволяют получить точное решение системы за конечное число арифметических действий. Чаще всего решение задач такими методами осуществляется поэтапно: на первом этапе систему преобразуют к тому или иному простому виду, на втором - решают упрощенную систему и получают значения неизвестных.

Запишем систему линейных алгебраических уравнений в развернутом виде:

 

 

где x1, x2,..., xn - неизвестные величины, b1, b2,..., bn - элементы правой части. Если определитель системы отличен от нуля, то она имеет единственное решение. Для удобства дальнейших преобразований обозначим элементы правой части аi(n+1) и запишем расширенную матрицу размерами n´(n+1), которая содержит всю информацию о системе:

 

A = .

 

С этой матрицей можно обращаться так же, как и с системой - переставлять строки, прибавлять кратное одной строки к другой, исключая неизвестные и приводя матрицу к треугольному или диагональному виду.

Приведем формальное описание схем некоторых прямых методов.

Метод Гаусса (схема единственного деления). Алгоритм метода состоит из двух этапов. Первый этап называется прямым ходом метода и заключается в последовательном исключении неизвестных из уравнений, т.е. в приведении матрицы А к верхнему треугольному виду (ниже главной диагонали все нули). Для этого на первом шаге разделим первое уравнение системы на а11 (предположим, что коэффициент а11 ≠ 0, в противном случае осуществляем перестановку уравнений системы). Обозначим коэффициенты полученного приведенного уравнения , домножим его на коэффициент а21 и вычтем из второго уравнения системы, исключая тем самым х1 из второго уравнения (обнуляя коэффициент а12 матрицы). Поступим аналогично с остальными уравнениями и получим новую систему, матрица которой в первом столбце, кроме первого элемента, содержит только нули, т.е.

 

.

 

Первое уравнение в дальнейших преобразования не участвует. Описанный выше процесс исключения неизвестных применим к матрице размерами (n-1) n. После k аналогичных шагов получим k приведенных уравнений с коэффициентами

 


и матрицу размерами (n - k) (n - k+1), элементы которой вычисляются по формулам

 

.

 

Элементы , на которые осуществляется деление, называются ведущими элементами метода Гаусса и не должны равняться нулю. Прямой ход метода Гаусса заканчивается после n шагов определением .

Обратный ход метода Гаусса заключается в последовательном определении компонент решения, начиная с хn и заканчивая х1, по следующим формулам:

Пример

Первый шаг

Второй шаг

Третий шаг

Итого получаем:

x3 = ¼; x2 = -1/3 +1/12 = -1/4;x1 = 1-1/4+1/2 = 5/4;

Метод Гаусса с выбором главного элемента. Метод заключается в том, что при прямом ходе в алгоритме метода Гаусса на каждом шаге исключения производится выбор наибольшего по модулю элемента в качестве ведущего. Этого достигают перестановкой строк или столбцов матрицы коэффициентов. Наиболее распространённой в вычислительной практике является стратегия выбора главного элемента столбца - нахождение максимального по модулю элемента k- го столбца матрицы и использование его в качестве ведущего элемента на k -м шаге исключения. В этом случае для невырожденных систем гарантируется, что ведущие элементы не равны нулю, и уменьшается погрешность при делении и последующем вычитании при преобразованиях. Рекомендуется также масштабировать предварительно каждое уравнение исходной системы, разделив на его наибольший по абсолютной величине коэффициент. Это делает рост элементов промежуточных матриц ограниченным.

Пример

Первый шаг

Второй шаг

Третий шаг

Итого получаем:

x3 = ¼; x2 = -1/5 +1/20 = -1/4;x1 = 3/2+1/8-3/8 = 5/4;

 

Метод оптимального исключения. В целях экономии оперативной памяти (примерно в 4 раза) операции прямого и обратного хода метода Гаусса выполняются попеременно. На первом шаге после приведения первого уравнения исключается неизвестное x1 из второго уравнения, а затем с помощью приведенного второго уравнения - неизвестное x2 из первого. После (k-1) таких шагов матрица системы имеет вид

 

.

 

На k- м шаге, используя первые k уравнений, исключаем неизвестные x1,..,xk из (k+1) -го уравнения. Затем посредством этого уравнения исключается неизвестное xk+1 из первых k уравнений и т.д. В результате прямого хода матрица системы приводится к диагональному виду с единицами на главной диагонали. При этом отпадает необходимость обратного хода, поскольку столбец правой части приведенной матрицы и является вектором решения.

Пример

Первый шаг

 

Второй шаг

x3 = ¼; x2 = = -1/4;x1 = 3/2+1/8-3/8 = 5/4;

 

Метод Гаусса-Жордана. Эта модификация метода Гаусса незначительно отличается от метода оптимального исключения. Операции исключения переменных для каждого приводимого уравнения осуществляют не только ниже, но и выше главной диагонали. Операции с первым уравнением системы полностью аналогичны стандартной схеме. Второе уравнение системы после приведения и домножения на соответствующие коэффициенты вычитаем не только из третьего и последующих уравнений, но и из первого. В результате k таких шагов получаем матрицу

 

.

 

Как и в методе оптимального исключения, матрица системы приводится к диагональному виду и вектором решения является столбец .

LU - разложение. Матрицу A можно представить в виде произведения нижней треугольной матрицы (включая диагональ) L (lower) и верхней треугольной матрицы U (upper), т.е. A=LU. Это равенство равносильно n2 числовым равенствам

 

.

 

Разложение матрицы A на множители обычно получают посредством алгоритма, который называется компактной схемой метода Гаусса. Элементы lim и Umi могут быть вычислены по формулам

 

 

Тогда решение системы Ax=b сводится к последовательному решению двух систем - Ly=b и Ux=y.

Рассмотренный метод можно применять к решению серии систем с одной и той же матрицей.

Пример

 

 

Первый шаг

 

Второй шаг

Третий шаг

 

 


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)