АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Доказательство. Умножая обе части матричного равенства на матрицу ХТ слева, в правой части получим f

Читайте также:
  1. Глава 4. Социальное доказательство.
  2. Доказательство.
  3. Доказательство.
  4. Доказательство.
  5. Доказательство.
  6. Доказательство.
  7. Доказательство.
  8. Доказательство.
  9. Доказательство.
  10. Доказательство.
  11. Доказательство.

АХ = .

Умножая обе части матричного равенства на матрицу ХТ слева, в правой части получим f.

 

Формулы называются линейным преобразованием неизвестных с матрицей . Обозначая через Х столбец из неизвестных , а через Y – столбец из неизвестных , запишем линейное преобразование в виде матричного равенства

X = QY.

Последовательное выполнение линейных преобразований с матрицами Q и R есть линейное преобразование неизвестных с матрицей QR, Если матрица линейного преобразования неизвестных невырожденная, то линейное преобразование называется невырожденным. Для невырожденной матрицы существует обратная, поэтому невырожденное линейное преобразование обратимо: Y = Q-1X.

Так как произведение невырожденных матриц – невырожденная матрица, то последовательное выполнение невырожденных линейных преобразований есть невырожденное линейное преобразование.

 

Теорема. Если квадратичную форму подвергнуть линейномупреобразованию X = QY с матрицей Q, то матрица преобразованной квадратичной формы равна QTAQ.

Доказательство. = .

 

Следствие. Знак определителя матрицы квадратичной формы при невырожденном линейном преобразовании не меняется.

Доказательство. В равенстве det QTAQ =det A det 2 Q по условию det 2 Q 0, а поэтому число положительное. Следовательно, числа det QTAQ и det A одного знака.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)