АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Число и понятие

Читайте также:
  1. B) Отрицательное число.
  2. I. Случайные величины с дискретным законом распределения (т.е. у случайных величин конечное или счетное число значений)
  3. II. Умножение матрицы на число
  4. III. ОСНОВНЫЕ АКСИОМЫ ЧИСЛА (ЧИСЛО КАК СУЖДЕНИЕ)
  5. III. Умножение вектора на число
  6. IV. ФУНКЦИЯ И СОСЕДНИЕ КАТЕГОРИИ (ЧИСЛО КАК СУЖДЕНИЕ, УМОЗАКЛЮЧЕНИЕ, ДОКАЗАТЕЛbСТВО И ВЫРАЖЕНИЕ)
  7. N – число измерений.
  8. N- число ступеней изменения концентраций
  9. Ni – число абонентских номеров для i- ой ТС.
  10. Аксиома ставшего числового бытия в арифметике.
  11. Аксиома ставшего числового бытия в геометрии.
  12. Аксиома ставшего числового бытия в теории вероятностей.

 

Однако, разумеется, и сфера чистого смысла слишком обширна, чтобы указанием на нее ограничиться при разыскании того, что такое число. Смысл весьма разнообразен по способу своего бытия и функционирования, и тут также нужны четкие отграничения.

1. Прежде всего, число не есть понятие, хотя последнее также имеет чисто смысловое происхождение. Понятие, как показывает самое название, есть структура, получившаяся в результате по–ятия, понимания. Понятие вещи есть понятая вещь, понятность вещи. Понятие, стало быть, привносит в вещь нечто из того, чем по–имается, понимается вещь. Понятие есть способ пребывания отвлеченного смысла в его инобытии. Обычно считается, что понятие есть способ пребывания отвлеченного смысла в сознании. Но такая формулировка совсем не обязательна. Понятие вещи есть просто смысл вещи, взятый не сам по себе, но в своем переходе в инобытие, так что видно, что привносит в вещь окружающее ее инобытие. Это инобытие может быть дано на степени первого своего полагания, без всякого перехода в дальнейшее инобытие. Тогда мы получаем понятие в обычном, абстрактном смысле этого слова. Напр., всякое научное понятие, в котором всегда можно перечислить все существенные признаки, очевидно, есть не только смысл вещи, данный в инобытии, но это инобытие еще не пошло дальше, не рассыпалось в последующее становление и не конструировалось заново из материалов этого становления. Тут слово, выражающее данное понятие, вполне тождественно с самим понятием, и оно не функционирует как что–нибудь по природе своей отличное от него. Всякое другое, вне–научное слово уже не будет тождественно с понятием; в нем это инобытие, в модусе которого дан смысл, будет выпирать все больше и больше на первый план. Наше обычное разговорное слово, давая нам понятие вещи, всегда дает еще то или иное освещение вещи. Так, если принять во внимание, что слово «печаль» связано со значением «печь», а «тоска» — со значением «тиски», «тискать» и т. д., то ясно, какой оттенок вносится каждым словом в одно общее и отвлеченное понятие страдания. Тут гораздо больше выразительности, чем в научном слове (термине). Еще большая роль указанного инобытия в художественном слове. И наконец, можно взять уже чистую инобытийность, чистое становление, и рассматривать его как перво–принцип. Тогда мы получаем различные алогические виды инобытия, к числу которых принадлежит, напр., музыка.



Вся эта сфера чистого смысла, от отвлеченного понятия до художественной формы, есть сфера выразительного смысла, т. е. такого, где помимо первоначального чистого смысла играет ту или иную роль способ пребывания этого смысла в инобытии, так что смысл оказывается здесь по меньшей мере двухмерным. Здесь два плана смысловой структуры — отвлеченный смысл и его инобы–тийное перекрытие—даны как одна и единственная структура. Это область смысловых форм, смысловых выражений, смысловых символов и пр. Будем кратко называть это выразительным смыслом или выразительными формами.

Есть ли число выразительная форма? На этот вопрос необходимо дать четкий ответ, чтобы сразу же стать на твердый путь и не сбиться с толку. Чтобы его разрешить, достаточно решить другой, гораздо более легкий вопрос: что предшествует чему, число выражению или выражение числу? Может ли быть число, которое никак не выражено, и может ли существовать выражение, в котором нет ничего числового? На этот вопрос приходится вполне твердо ответить: число возможно без выражения, т. е. оно возможно как выразительная форма, а выразительная форма никак невозможна без числа. Без числа вообще ничто невозможно, ни малейшее движение мысли или бытия. И потому число — раньше всего, раньше и всякой выразительной формы. Следовательно, сначала нужно знать, что такое число, а уже потом можно задавать вопрос о том, как оно выражено.

Однако здесь надо иметь в виду, что число, будучи в основе своей вне–выразительно и до–выразительно, дорастает до выразительных форм. В специальном анализе математических категорий мы увидим, что двухмерность, трехмерность и т. д. весьма часто выступают в математике под видом самых обычных понятий и что математика в этом смысле есть наука и о выразительных формах. Но разумеется, здесь — только специфические выразительные формы, не всякие, и выбор их строго определен характером того первоначального отвлеченного смысла, в отношении которого существуют эти выразительные формы в математике.

‡агрузка...

Между прочим, как раз этой своей принципиальной выразительности математика обязана своей достоверностью. Конечно, это не единственная причина математической достоверности. Но все–таки то обстоятельство, что бытие, которым занята математика, не требует понимания, а только мышления, что математика требует чистой мыслимости, а не выразительности, это обстоятельство не могло не упростить ее предмета в смысле адекватности уразумения, и оно не требовало от человека кроме мышления еще и выразительного понимания, способности, разная степень которой очень и очень сказывается на кругозоре человеческого сознания и часто заставляет его создавать весьма уродливые и искаженные формы. Математика нуждается только в мышлении, а не в понимании; и в этом ее полная противоположность с филологией, которая, по старинному и прекрасному определению А. Бека, есть всегда «понимание понятого».

3. Не надо извращать и доводить до абсурда только что высказанную идею. Мышление и понимание — принципиально различные сферы сознания. Это различие, конечно, не только не мешает им так или иначе объединиться, но можно сказать и так, что конкретная жизненность сознания только и возникает на почве объединения и синтезирования этих форм. Чтобы что–нибудь помыслить, надо это как–нибудь понять; и чтобы нечто понять, надо его и как–то помыслить. Однако никакая целостность и жизненность не может воспрепятствовать философу производить свои абстракции. С возникновением абстракций только ведь и начинается наука. И вот одно из основных различений в сфере сознания — это различение мышления и понимания. Мышление есть как бы некий механизм, превращающий неоформленное сырье в данные технически оформленные вещи. Понимание же заново перекраивает и переделывает эти вещи, придавая им новый стиль и новое единство, какого там, в первоначальном их появлении, совсем не было.

Мышление создает смысловой скелет вещи; понимание исходит из вещи, которая на своем скелете несет также и живое тело. Мышление вещи остается внутри самой вещи или объединяет ряд вещей в одно целое; понимание же берет вещь в ее осуществленности в том или другом инобытии, берет, следовательно, вместе с этим инобытием, причем выбор этого инобытия произволен и нисколько не зависит от собственной значимости вещи. Поэтому понимание вовсе даже не есть процесс чисто интеллектуальный, каковым, несомненно, является мышление. Это процесс гораздо более общий, процесс вообще некоего отождествления мыслимой вещи с тем или другим инобытием, напр. с эмоциональным, аффективным и каким угодно. Поэтому понимание, в противоположность мышлению, всегда «субъективно», хотя этот субъективизм вовсе не есть тут нечто противоположное объективистической оценке бытия, а только более сложная структура все того же объективного мира, структура как объективный коррелят субъективного понимания, сам по себе не менее объективный, чем все прочее.

Поэтому математика растет и падает вместе с мышлением. Если мышление функционирует, математика создается; и если оно прекращается, прекращается и математика. В математике или есть мышление, тогда она — математика; или его нет, тогда падает и математика. Ошибка в вычислении или доказательстве есть результат частичного отсутствия мышления в той или другой области. И совсем другое дело в филологии, в той науке, которую с полным правом надо назвать наукой о понимании (или о словах — что одно и то же). Здесь мышление совсем не обязательно в такой точной и непрерывной форме. Здесь важна выразительность, выраженность сама по себе, и не важен самый предмет выражения и понимания. Ущербность выражения не имеет ничего общего с прекращением мышления. Выражение и понимание могут быть хорошими или плохими независимо от абстрактной, смысловой структуры выражаемого и понимаемого. Движение чистой мысли в отношении данной вещи может кончиться совершенно, и сама эта вещь может превратиться в нечто совершенно статическое; и при всем том ее выразительные формы могут развиваться, и она может иметь весьма динамичные формы понимания. В математике не может быть спора о том, как понимать те или иные аксиомы и теоремы, но только о том, как их мыслить, т. е. как их строить, как их формулировать и доказывать; и если в математике заходит речь о понимании, то это уже не есть чистая математика, это уже привнесение в математику совершенно нематематических — напр. философских — точек зрения. В предметах же филологии — напр. в языке, в истории, в искусстве — важно как раз понимание, интерпретация. Поэтому доказательство, скажем, равенства суммы углов в треугольнике двум прямым углам возможно только одно (из параллельности линий); пониманий же того, что такое Робеспьер или крестовые походы, может быть очень много. Даже в тех случаях, когда теорема доказывается разными способами, ее понимание этим нисколько не затрагивается; и смысл этих разных доказательств, в общем, абсолютно один и тот же.

Итак, в области смысла надо различать отвлеченные и выразительные формы. Число есть прежде всего отвлеченная сфера чистого смысла, а не выразительная. Хотя это не мешает вне–выразительным математическим структурам дорастать до выразительных (ярким образцом такой математической выразительности являются, напр., вектор и тензор или вся теория поля). Число есть принцип самого первого различения, и тут еще нет никакой выразительности, хотя ничто и не мешает ей возникнуть впоследствии.

 

§ 15. Число есть самый акт смыслового полагания, а не содержание этого полагания.

 

Однако и сфера чистого, вне–выразительного смысла все еще очень широка, чтобы этим ограничиться. Чем отличается число от других видов смыслового бытия? Существуют вещи, и существует их смысл. Существует смысл вещи. Спрашивается: если я сосчитаю несколько вещей или в одной и той же вещи пересчитаем ее части, чем эта операция будет отличаться от фиксирования смысла этих вещей как такового?

Тут перед нами возникает одно из самых фундаментальных свойств всякого числа, всякого математического бытия. А именно число есть, как выразился Гегель, «равнодушная к себе самой определенность». Что это значит?

Это значит то, что число есть такой смысл вещей, который не касается их содержания, не входит в индивидуальное описание и фиксацию тех вещей, которые он представительствует. Уже мы говорили, что пятерка совершенно не зависит от того, будет ли иметься в виду пять орехов, пять копеек или пять груш. Но там мы подразумеваем грубые чувственные «качества и вещи. Здесь же мы имеем в виду вообще всякие качества, в том числе и чисто смысловые. Число не содержит в себе ровно никакой качественности, ни вещественной или чувственной, ни смысловой. Правда, и здесь надо сказать, что это не только не мешает появлению своей, уже чисто числовой качественности, но, наоборот, диалектически обусловливает собою появление этой, только уже не вещественной и не общесмысловой, а специфически числовой качественности. И все типы этой числовой качественности должны быть обследованы нами с полной тщательностью. Однако, вообще говоря, число есть бескачественная, вне–содержательная смысловая структура, и в этом ее резкое отличие от всякого смысла вещей, взятых в их конкретной существенности. Число в этом смысле абсолютно формально.

Эту фундаментальную особенность всего числового мира можно фиксировать и более строго. Как это сделать, избегая описательных и более общих выражений? Это можно сделать так. Число, само по себе взятое, нисколько не заинтересовано в вещах, по отношению к которым оно может считаться числом. Когда мыслится чистое число (напр., при мышлении натурального ряда чисел), мы замечаем, что тут действует не то, что мы своей мыслью полагаем, но самые акты мыслительного полагания. То, что мы полагаем актом своей мысли, может быть чем угодно и кем угодно; это как раз не важно. А важно самое полагание, акты самого полагания.

При этом, помня наше отграничение числа от всяких субъектов и субъективных процессов, мы отнюдь не должны думать, что числу необходимы именно наши полагания, полагания именно моей, или вашей, или вообще чьей бы то ни было мысли. Для числа это тоже совершенно не нужно и только вредит рассмотрению существенного. Туг имеется в виду мысленное, смысловое понимание вообще. Кто полагает и что именно полагается, — на этот вопрос число не отвечает. Но число отвечает на вопрос о самих полаганиях, об актах самого полагания. Хотя и это еще не полный спецификум числа, но без этих актов полагания числа не существует. Число есть определенная форма, или тип, чистого смыслового полагания, форма смысловой положенности.

Полагание — это одна из тех первоначальных и вполне примитивных установок, которые возникают в результате не требующей пояснения очевидности и самодостоверности и лежат в основе всех прочих построений. Полагание, утверждение — это то, что мы не будем пояснять и что невозможно пояснить, раз это самое примитивное и до–теоретическое усмотрение. По этому поводу необходимо заметить, что задача философии вообще часто заключается только в одном сведении сложного и неясного на примитивное и очевидное. Не в том задача философии, чтобы разъяснять очевидное; все равно, рано или поздно, мы упираемся в ряд некоторых основных категорий и аксиом, каковые уже неразложимы дальше. И как только мы дошли до этого, так (во многих случаях) мы уже и решили философскую задачу, и дальнейших разъяснений уже не требуется. Поэтому сложное и неясное объясняется из примитивного и очевидного; но примитивное и очевидное, если оно таково, уже не нуждается ни в каких дальнейших разъяснениях.

Такова же и самодостоверная природа акта полагания. Число относится к сфере этих актов чистого смыслового полагания.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |


При использовании материала, поставите ссылку на Студалл.Орг (0.006 сек.)