АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Проблема химического соединения

Читайте также:
  1. II частина. Проблема спеціальних здібностей у сучасній диференційній психології
  2. II. Проблема возникновения науки
  3. II. Проблема источника и метода познания.
  4. II. СМЕЩЕНИЕ ХИМИЧЕСКОГО РАВНОВЕСИЯ. ПРИНЦИП ЛЕ-ШАТЕЛЬЕ
  5. III. Проблема субстанции.
  6. IV. Проблема соціальної справедливості і соціальних гарантій.
  7. XX век как литературная эпоха. Проблема периодизации.
  8. Азотсодержащие соединения
  9. АЗОТСОДЕРЖАЩИЕ СОЕДИНЕНИЯ.
  10. Аксиологическая проблема
  11. Альтернативні моделі розвитку. Центральна проблема (ринок і КАС). Азіатські моделі. Європейська модель. Американська модель
  12. Альтернативные издержки и проблема экономического выбора. Кривая производственных возможностей.

 

Все химические соединения подразделяются на неорганические и органические. Особой проблемы понятия химического соединения до недавнего времени не существовало. Было общепринято, что следует относить к химическим соединениям, а что – к смесям.

В начале XIX в. Ж. Пруст (1754-1826гг.) сформулировал закон постоянства состава: любое индивидуальное химическое соединение обладает строго определённым неизменным составом, прочным притяжением составных частей (атомов) и тем отличается от смесей.

Теоретически закон постоянства состава обосновал Д. Дальтон (1766-1844гг.). Возникла модель веществ постоянного состава – дальтониды. На основе идеи об атомистическом строении вещества он утверждал, что химические соединения состоят из атомов двух или нескольких элементов, образующих определённые (он считал кратные) сочетания друг с другом. Возникла стехиометрическая модель химических соединений, а затем и типологии молекул.

К.Л. Бертолле (1748-1822), внёсший совместно с А.А. Лавуазье значительный вклад в номенклатуру химических соединений, считал, что в химии огромная роль принадлежит веществам переменного состава – бертоллидам.

С конца XIX в. возобновились исследования, подвергающие сомнению абсолютизацию закона постоянства состава. Результаты исследований показали, что суть проблемы химических соединений состоит не столько в постоянстве состава, сколько в природе химических связей, объединяющих атомы в единую квантово-механическую систему – молекулу. Молекула представляет собой электронейтральную наименьшую совокупность атомов, образующих определённую структуру посредством химических связей. Химические связи – это обменное взаимодействие электронов, обобщение валентных электронов, и “перекрывание электронных облаков”.

В результате открытия физической природы химизма, как обменного взаимодействия электронов, химия по-новому стала решать проблему химического соединения, которое определяется как качественно определённое вещество, состоящее из одного или нескольких химических элементов, атомы которых за счёт обменного взаимодействия (химической связи) объединены в частицы (химические корпускулы по меткому выражению М.В. Ломоносова) – молекулы, комплексы, монокристаллы или иные агрегаты (системы).



Произошло пересечение (“вложение” друг в друга) стехиометрической, атомно-молекулярной, геометрической и электронной моделей химии. С современной точки зрения, стехиометрическая модель означает использование химических формул и уравнений, атомно-молекулярная модель – описание химических реакций как внутри- и межмолекулярных перегруппировок атомов, геометрическая модель определяет язык структурных формул и геометрических молекулярных параметров, а электронная модель выводит реакционную способность веществ из электронного строения молекул. Эти модели “вложены” друг в друга: каждая последующая использует и детализирует постулаты предыдущих:

 

* На основании вышеизложенного можно дать определение химическим формулам и реакциям. Химическая формула отображает состав (структуру) вещества в виде химического соединения. Молекулярная формула указывает число атомов химического элемента в молекуле. Структурная (графическая) формула отражает порядок соединения атомов в молекуле и число связей между атомами. Химическая реакция отображает превращение веществ, сопровождающееся изменением их состава и (или) строения. Записывается схематически с помощью формул реагентов и продуктов реакции.

* В рамках современной электронной модели можно дать и краткую характеристику основным типам химических связей (см. схему 43)

 

 

Схема 43. Характерные особенности основных типов химических связей.

 


1 | 2 | 3 | 4 | 5 |


При использовании материала, поставите ссылку на Студалл.Орг (0.012 сек.)