АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кинематика плоскопараллельного движения твердого тела

Читайте также:
  1. I. ОСНОВНЫЕ СПОСОБЫ ПЕРЕДВИЖЕНИЯ И ПРЕОДОЛЕНИЯ ПРЕПЯТСТВИЙ
  2. А — при двустороннем движении судов; б — при одностороннем движения
  3. Анализ движения дебиторской и кредиторской задолженности
  4. Анализ движения денежной наличности
  5. Анализ движения денежных средств
  6. Анализ движения денежных средств прямым и косвенным методом
  7. Анализ движения и технического состояния основных средств
  8. Анализ движения ОС
  9. Анализ движения основных фондов
  10. Анализ наличия и движения основных средств
  11. Анализ остатков и движения денежной наличности
  12. Анализ причин ДТП и меры, повышающие безопасность движения.

 

 

Плоскопараллельным (плоским) движением твердого тела называется такое движение, при котором траектории всех его точек лежат в плоскостях, параллельных некоторой неподвижной плоскости. Пусть тело движется параллельно некоторой неподвижной плоскости П (рис. 23). Если пересечь данное тело плоскостью х О у, параллельной неподвижной плоскости П, то в сечении получится какая-то плоская фигура S. Эта фигура будет перемещаться при движении тела, оставаясь все время в той же плоскости х О у. Очевидно, что при таком движении тела все его точки, лежащие на перпендикуляре А а к плоскости фигуры, движутся совершенно одинаково, так же как и точка А этой фигуры. Все точки, расположенные на перпендикуляре В в к плоскости фигуры, движутся так же, как и точка В этой фигуры, и т. д. Отсюда следует, что для определения плоского движения тела достаточно знать движение плоской фигуры в ее плоскости.

Положение неизменяемой плоской фигуры S в ее плоскости вполне определяется положением двух произвольных ее точек А и В. Следовательно, изучение движения плоской фигуры в ее плоскости сводится к изучению движения прямолинейного отрезка АВ, с которым фигура неизменно связана. Но положение отрезка АВ определяется двумя координатами х А и у А точки А, называемой полюсом и углом j, который образует этот отрезок с некоторой осью неизменного направления, лежащей в плоскости данной фигуры (рис. 24).

 

 

 

Рис. 23

 

 

 

Рис. 24

Таким образом, движение плоской фигуры в ее плоскости можно определить следующими тремя уравнениями:

 

x A = х A (t),

 

y A = y A (t),

 

j = j (t).

 

Из этих уравнений следует, что движение плоской фигуры можно разложить на два движения: 1) поступательное движение вместе с полюсом А и определяемое первыми двумя уравнениями и 2) вращательное движение вокруг полюса, определяемое третьим уравнением. При этом угловая скорость вращательного движения не зависит от выбора полюса. Очевидно, что скорость любой точки В плоской фигуры равна геометрической сумме двух скоростей: скорости полюса и скорости точки В во вращательном движении вокруг полюса (рис. 25), т. е.

 

= + ,

 

причем ^ АВ и = w×АВ.

Отсюда следует теорема о проекциях скоростей точек плоской фигуры: проекции скоростей двух точек плоской фигуры на ось h, проходящую через эти точки, равны между собой.

Мгновенным центром скоростей (МЦС) называется такая точка Р плоской фигуры, скорость которой в данный момент равна нулю.

Если известны скорость какой-либо точки А плоской фигуры и угловая скорость w этой фигуры, то, повернув вектор вокруг точки А на 90° в направлении вращения фигуры и отложив на этой полупрямой отрезок

 

АР = /w,

 

получим точку Р, которая является МЦС (рис. 25).

 

 

Рис. 25

Если же известны направления скоростей двух точек плоской фигуры, то МЦС находят как точку пересечения перпендикуляров, восстановленных в этих точках к направлениям их скоростей.

Если мгновенный центр скоростей Р найден и если известна угловая скорость фигуры, то скорость любой точки В фигуры определяется как скорость этой точки во вращательном движении вокруг МЦС, т. е. вектор перпендикулярен к отрезку РВ и по модулю равен w×РВ. Отсюда следует, что скорости точек плоской фигуры пропорциональны их расстояниям от мгновенного центра скоростей, т. е.

 

Отметим другие случаи нахождения положения МЦС.

Если скорости точек А и В параллельны и АВ ^ , то для определения положения МЦС следует воспользоваться свойством пропорциональности скоростей расстояниям точек до мгновенного центра скоростей. На рис. 26, а, б представлено, как находится МЦС в этих случаях.

На рис. 26, в показан случай, когда и параллельны, но неперпендикулярна отрезку АВ. Очевидно, что в этом случае прямые А а и В в, перпендикулярные и , пересекаются в бесконечности и мгновенного центра скоростей не существует, а угловая скорость фигуры равна нулю (w = 0). На основании теоремы о проекциях скоростей имеем VA×cos a = VB×cos a, отсюда VA = VB и = . Значит, в данный момент времени скорости всех точек плоской фигуры равны по модулю и направлению.

 

 

Рис. 26

При качении без скольжения одного тела по поверхности неподвижного другого (рис. 26, г) МЦС совпадает с точкой Р соприкосновения тел (так как при отсутствии скольжения скорость точки соприкосновения равна нулю).

Ускорение любой точки движущейся плоской фигуры можно определить как геометрическую сумму ускорений этой точки в поступательном движении вместе с некоторым полюсом и вращательным движением вокруг этого полюса.

Если известны ускорение некоторой точки А фигуры (ускорение полюса), а также угловая скорость w и угловое ускорение e фигуры, то ускорение любой ее точки В определяется по формуле

 

= + = + + .

 

Здесь вектор - ускорение точки В во вращательном движении вокруг полюса А; и - нормальная и касательная составляющие этого вектора, которые вычисляем по формулам:

 

= w2 × АВ, = e × АВ.

 

При этом вектор направлен вдоль ВА (от точки В к точке А), а вектор перпендикулярен к ВА (рис. 27).

 

 

Рис. 27

 

Ускорение точки В можно определить, если спроецировать векторное равенство

= + +

 

на оси х и у (см. рис. 27) и найти проекции этого ускорения:

 

= , = + .

 

По проекциям находят модуль ускорения точки В:

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)