АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос № 18

Читайте также:
  1. I. Перечень вопросов и тем для подготовки к экзамену
  2. II. Вопросительное предложение
  3. VII. Вопросник для анализа учителем особенностей индивидуального стиля своей педагогической деятельности (А.К. Маркова)
  4. X. примерный перечень вопросов к итоговой аттестации
  5. Аграрный вопрос
  6. Анализ влияния рекламы на продвижение противопростудных средств
  7. Балканский вопрос в начале XXв. Русско-германские отношения
  8. БЛОК № 1 (1 – 10 вопрос)
  9. БЛОК № 2 (11 – 20 вопрос)
  10. Блок № 4 (31 – 40 вопрос)
  11. Болгарский вопрос. Соборы на Западе на Востоке. Окончательное разделение 1054 года
  12. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница

Дайте определение плоскопараллельного движения твердого тела, обоснуйте и запишите уравнения плоскопараллельного движения. Каковы основные кинематические характеристики плоскопараллельного движения.

Движение абсолютно твердого тела называется плос­копараллельным (или плоским), если все точки этого тела дви­жутся в плоскостях, параллельных некоторой неподвижной плоскости. Примером плоскопараллельного движения твердого тела может служить движение колеса по прямолинейному рельсу или движение шатуна кривошипно-ползунного механизма.

Рассмотрим плоскопараллельное движение произвольно­го твердого тела. Пусть все точки тела перемещаются в плоскостях, параллельных неподвижной плоскости xОy. Пересечем рас­сматриваемое тело плоскостью Q, параллельной неподвижной плоскости хОу (рис. 2.24). В результа­те в сечении получим некоторую фи­гуру S. Из определения плоскопарал­лельного движения твердого тела сле­дует, что плоская фигура S перемеща­ется с данным телом и остается во все время этого движения в плоскости Q. Следовательно, любой отрезок АС, взятый в теле и перпендикулярный к плоскости хОу, будет дви­гаться параллельно своему первоначальному положению, т.е. поступательно. Скорость и ускорение любой из точек отрезка АС будут параллельны плоскости хОу. Но тогда для определения движения всех точек тела, лежащих на отрезке АС, достаточно знать движение одной точки этого отрезка, а за такую точку можно взять точку А плоской фигуры S. Отсюда следует, что для определения плоскопараллельного движения твердого тела необ­ходимо знать движение лишь одной точки на каждой прямой, проведенной перпендикулярно неподвижной плоскости хОу, т.е. достаточно знать движение плоской фигуры S в ее плоскости.

Итак, задание плоскопараллельного движения твердого тела и изучение этого движения сводится к заданию движения одного сечения тела. Поэтому в дальнейшем плоскость Q будем совмещать с плоскостью чертежа, а вместо всего тела изображать только плоскую фигуру - сечение тела 5, и изучать движение точек этого сечения в его плоскости. Строго говоря, рассматривая движение плоской фигуры 5 в ее плоскости, мы рассматриваем движение всей плоскости, неизменно связанной с движущейся фигурой относительно неподвижной плоскости, так что вопрос сводится к рассмотрению движения подвижной плоскости отно­сительно неподвижной. Положение сечения S в его плоскости определяется положением двух точек этого сечения или положе­нием отрезка прямой, соединяющей эти две точки, например, отрезка АВ. Т.е. кинематика плоскопараллельного движения тела сводится к кинематике движения отрезка прямой в плоскости.

Пусть- две точки плоской фигуры, находящейся в плоскости xOy (рис 2.25, а). Расстояние d ме­жду этими точками определяется следующим равенством:

(1)

Так как это расстояние неизменно, то из четырех коор­динат х1А, у1А и х1В, у1В независимых только три, т.е. положение отрезка на плоскости вполне определяется тремя независимыми параметрами. В качестве таких независимых параметров можно взять координаты одной из точек, например, координаты х1А и у1А точки А и угол ф, который отрезок АВ образует с осью X1.

Точку А, выбранную для определения положения сече­ния S, будем в дальнейшем называть полюсом. Проведем через этот полюс координатные оси Ах и Ау, неизменно связанные с плоской фигурой и движущиеся вместе с ней относительно не­подвижных осей координат Ох1у1. Для того, чтобы знать поло­жение плоской фигуры, или, что то же самое, положение под­вижных осей координат Оху относительно неподвижных осей ОХ1у1 достаточно задать координаты Х1А, у1А полюса А и угол ф, который составляет подвижная ось Ах с неподвижной Ох1. При этом условимся считать угол поворота ср положительным, когда он отложен от оси ОХ1 в направлении, обратном движению часо­вой стрелки (рис. 2.25, б). При движении тела величины x1A,y1A и ф будут изменяться с течением времени. Чтобы знать закон дви­жения тела, т.е. знать его положение в пространстве в любой мо­мент времени, надо знать зависимости:

(2)Уравнения (2), полностью определяющие положение плоской фигуры в любой момент времени, называются уравне­ниями плоскопараллельного движения твердого тела.

В заключение отметим, что частными случаями движе­ния плоской фигуры в ее плоскости являются поступательное и вращательное. Определения, свойства этих движений и соответ­ствующие формулы изучены нами ранее.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)