АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Постановка краевых задач

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. 1.1. Пример разработки модели задачи технического контроля
  3. I. 1.2. Общая постановка задачи линейного программирования
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. 3.1. Двойственная задача линейного программирования
  6. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  7. I. ЗАДАЧИ ПЕДАГОГИЧЕСКОЙ ПРАКТИКИ
  8. I. Значение и задачи учета. Основные документы от реализации продукции, работ, услуг.
  9. I. Решение логических задач средствами алгебры логики
  10. I. Розв’язати задачі
  11. I. Ситуационные задачи и тестовые задания.
  12. I. Цель и задачи дисциплины

Рассмотрим уравнение

. (17)

На промежутке на одном из концов . Допустим, что . Уравнение (17) – это дифференциальное уравнение 2-го порядка, его решение записывается в виде , где – любые линейно независимые частные решения.

Допустим, нам удалось найти ограниченное на частное решение , имеющее вид . Тогда, согласно леммам 1, 2, второе частное решение неограничено в точке . Поэтому мы должны положить .

В точке ставятся «естественные» граничные условия 1-го, 2-го и 3-го родов. В результате приходим к следующей краевой задаче:

найти собственные значения и собственные функции уравнения

(19)

при условии . И при обычном условии при , а именно: или , или . Если интервал бесконечен, то условие ограниченности функции заменяется более слабым требованием: решение на бесконечности не должно возрастать быстрее, чем конечная степень переменной .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.02 сек.)