АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

История создания клеточной теории

Читайте также:
  1. CASE-технология создания информационных систем
  2. EXPFUTS (Б.История операций будущих периодов)
  3. II. Конец Золотой Орды и история образования казакского ханства
  4. III. УЧЕБНО – МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО КУРСУ «ИСТОРИЯ ЗАРУБЕЖНОЙ ЛИТЕРАТУРЫ К. XIX – НАЧ. XX В.»
  5. INSPEC (Б. Инвентарная картотека - История операций)
  6. INSPECT (Б.Инвентарная картотека - История налоговых операций)
  7. MBPAMORT (Б. Карточки МБП - История начисления амортизации на МБП)
  8. MBPSPEC (Б. Картотека МБП - История операций по МБП)
  9. MBPWROFF (Б.История списания МБП)
  10. MFCNORSP (ВД. История выдачи)
  11. PR, реклама и маркетинг: история конфликта
  12. V. Запутанная история

Клеточная теория.

Открытие клетки принадлежит английскому ученому Р.Гуку, который в 1665 г. в сконструированном им микроскопе впервые рассматривал тонкий срез пробки. На срезе четко просматривалась структура, похожая на пчелиные соты, построенные из ячеек. Элементы тонкого слоя пробки Р.Гук назвал латинскими словом «се11и!а», что означает ячейка, или клетка. Значительный вклад в изучение клетки внес А. Левенгук, открывший в 1674 г. одноклеточные организмы, в том числе бактерии. В 1831 г. английский ботаник Р.Броун обнаружил в клетках ядро. Это открытие послужило важной предпосылкой для установления сходства между клетками растений и животных.

В 1838-1839 гг. немецкие ученые ботаник М.Шлейден и зоолог Т.Шванн обобщили имевшиеся знания о клетке в единую теорию, утверждавшую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ.

Клеточная теория получила дальнейшее развитие в трудах немецкого ученого Р.Вирхова, внесшего в 1858 г. существенное дополнение: клетка может возникнут только из предшествующей клетки в результате ее деления. Кроме того, русский ученый К. Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки. Это открытие показало, что клетка — не только единица строения, но и единица развития всех живых организмов.

Идея о том, что все организмы построены из клеток стала одним из наиболее важных теоретических достижений в истории биологии, поскольку создала единую основу для изучения всех живых существ. На клеточном уровне даже наиболее отдаленные виды весьма схожи по строению и биохимическим свойствам, что указывает на общность их происхождения и эволюционного развития.

Дальнейшие успехи науки о клетке связаны с усовершенствованием приборов и развитием физических и химических методов исследования. Комплексное использование электронного микроскопирования и микрохимических методов анализа позволило в мельчайших деталях изучить строение и химический состав всех структурных компонентов клетки — ядра, митохондрий, хлоропластов, рибосом и др. Кроме того, это дало возможность доказать неразрывную связь между структурой клетки и ее функцией.

Клеточная теория позволила сформулировать вывод о том, что клетка – это важнейшая составляющая часть всех живых организмов. Клеточная теория позволила придти к выводу о сходстве химического состава всех клеток и еще раз подтвердила единство всего органического мира.

Современная клеточная теория включает следующие положения.

1. Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого.

2. Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

3. Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления материнской клетки.

4. В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции.

4 Клетка элементарная генетическая и структурно-фунцион ….

Клетка— элементарная структурная и функциональная единица растительных и животных организмов, способная к самовоспроизведению и развитию. Нек-рые микроорганизмы, напр, бактерии, многие водоросли, грибы и простейшие, могут состоять из одной клетки. Многоклеточные организмы, к к-рым относятся все высшие растения, животные и человек, построены из большого количества различных клеток, объединенных в ткани и органы.

Термин «клетка» впервые введен англ. ученым Р. Гуком в 1665 г.,
1). Оболочка клетки имеет жидкостно-мозаичное строение. Функциональные особенности ее определяются ее химическим составом и структурой.2) Через мембраны живой клетки вещества могут проникать как пассивно, так и активно, если:они способны растворить липиды мембраны.
они растворены в воде и имеют достаточно малые размеры молекул,

в клетке концентрация этих веществ меньше, чем в окружающей среде,
есть специальные молекулы – переносчики веществ, запрограммированные на перенос этих веществ.


3). Не все вещества, окружающие клетку, способны проникнуть через мембрану. Следовательно, мембрана - полупроницаема.

4). Мембрана транспортирует в клетку те вещества, которые необходимы для собственного обмена веществ, т. е. транспорт – избирателен.

Прио́ны — особый класс инфекционных агентов, чисто белковых, не содержащих нуклеиновых кислот (впрочем, на счёт состава прионов имеются и другие точки зрения, см. раздел). Это положение лежит в основе в настоящее время обсуждаемой т.н. прионной гипотезы. Прионы вызывают трансмиссивные губчатые энцефалопатии (ТГЭ) у различных млекопитающих, в том числе губчатую энцефалопатию крупного рогатого скота («коровье бешенство»). Прионы не относятся к живым организмам, но они могут размножаться, нарушая функции живых клеток хозяйского организма (в этом отношении прионы схожи с вирусами) Вироиды — патогены растений, которые состоят из короткого фрагмента (несколько сотен нуклеотидов) высококомплементарной, кольцевой, одноцепочечной РНК, не покрытой белковой оболочкой, характерной для вирусов.Самые малые вироиды scRNA (малые цитоплазматические РНК) вируса жёлтой крапчатости риса (англ. RYMV, rice yellow mottle sobemovirus) имеют длину всего 220 нуклеотидов. Для сравнения: геном самого маленького известного вируса, способного вызывать инфекцию, имеет размер около 2000 оснований. Ви́рус (лат. virus — «яд»[2]) — неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток[комм. 2]. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей[3] (вирусы бактерий обычно называют бактериофагами). Обнаружены также вирусы, поражающие другие вирусы (вирусы-сателлиты).

.Прокариоты (лат. про – перед и гр. карион – ядро) – это древнейшие организмы, не имеющие оформленного ядра. Носителем наследственной информации у них является молекула ДНК, которая образует нуклеоид. В цитоплазме прокариотической клетки нет многих органоидов, которые имеются у эукариотической клетки (митохондрий, эндоплазматической сети, аппарата Гольджи и т.д.; функции этих органоидов выполняют ограниченные мембранами полости). В прокариотической клетке имеются рибосомы. Большинство прокариот имеет размер 1–5 мкм. Размножаются они путем деления без выраженного полового процесса. Прокариоты обычно выделяют в надцарство. К ним относят бактерии, сине-зеленые водоросли (цианеи, или цианобактерии), риккетсии, микоплазмы и ряд других организмов.

Эукариоты (гр. эу – хорошо и карион – ядро) – организмы, в клетках которых есть четко оформленные ядра, имеющие собственную оболочку (кариолемму) (рис. 1, 2). Ядерная ДНК у них заключена в хромосомы. В цитоплазме эукариотических клеток имеются различные органоиды, выполняющие специфические функции (митохондрии, эндоплазматическая сеть, аппарат Гольджи, рибосомы и т.д.). Большинство эукариотических клеток имеет размер порядка 25 мкм. Размножаются они митозом или мейозом (образуя половые клетки – гаметы или споры у растений); изредка встречается амитоз – прямое деление, при котором не происходит равномерного распределения генетического материала (например, в клетках эпителия печени). Эукариоты также выделяют в особое надцарство, которое включает царства грибов, растений и животных.

Клеточная теория позволила сформулировать вывод о том, что клетка – это важнейшая составляющая часть всех живых организмов. Клеточная теория позволила придти к выводу о сходстве химического состава всех клеток и еще раз подтвердила единство всего органического мира. № 5 Клетка как открытая система. Организация потоков вещества, энергии и информации клеток многоклеточного организма. Биологически активные вещества, синтезируемые в клетке и их медицинское значение.

 

Процесс поступления веществ в клетку называется эндоцитозом. Различают пиноцитоз и фагоцитоз.

Фагоцитоз (греч. фаго – пожирать) – поглощение клеткой твердых органических веществ (рис. 5). Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется впячивание мембраны. В результате частица оказывается заключенной в мембранный пузырек внутри клетки. Такой пузырек называют фагосомой. Термин «фагоцитоз» был предложен И.И. Мечниковым в 1882 г. Фагоцитоз свойствен простейшим, кишечнополостным, лейкоцитам, а также клеткам капилляров костного мозга, селезенки, печени, надпочечников.

Второй способ поступления веществ в клетку называют пиноцитозом (греч. пино – пью) – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим.

Еще один способ поступления веществ в клетку – осмос – прохождение воды через избирательно проницаемую мембрану клетки. Вода переходит из менее концентрированного раствора в более концентрированный. Вещества могут также проходить через мембрану путем диффузии – так транспортируются вещества, способные растворяться в липидах (простые и сложные эфиры, жирные кислоты и т.д.). Путем диффузии по градиенту концентрации по специальным каналам мембраны идут некоторые ионы (например, ион калия выходит из клетки).

Кроме того, транспорт веществ через мембрану осуществляет натрий-калиевый насос: он перемещает ионы натрия из клетки и ионы калия в клетку против градиента концентраций с затратой энергии АТФ.

Фагоцитоз, пиноцитоз и натрий-калиевый насос – это примеры активного транспорта, а осмос и диффузия – пассивного транспорта.

АТФ – это аденозинтрифосфат, нуклеотид, относящийся к группе нуклеиновых кислот. Концентрация АТФ в клетке мала (0,04%; в скелетных мышцах 0,5%). Молекула АТФ состоит из аденина, рибозы и трех остатков фосфорной кислоты. АТФ называют универсальным источником энергии, потому что энергетика клетки основана главным образом на процессах, в которых АТФ либо синтезируется, либо расходуется.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)