АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Использование ускорителей заряженных частиц

Читайте также:
  1. Aufgabe 4. Везде ли нужна частица “zu”?
  2. II. Структура и использование земель сельскохозяйственного назначения
  3. II.2.3. Получение информации в работе психолога и ее использование
  4. III. Дифракция Фраунгофера на мелких круглых частицах.
  5. III. Разведение спирта с использованием таблиц ГФ XI.
  6. III. Создание и обработка комплексного информационного объекта в виде презентации с использованием шаблонов.
  7. IX. Запахи и микрочастицы.
  8. V2: Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
  9. V2: Элементарные частицы
  10. А) ИСПОЛЬЗОВАНИЕ КАТЕГОРИИ ВИДА В РУССКОМ ЯЗЫКЕ
  11. Адгезия – притяжение частиц из разных фаз.
  12. Административная ответственность за нарушения прав на использование информацией

Ускорителем называют устройство, в котором под действием электрических и магнитных полей формируется пучок заряженных частиц высокой энергии.

Различают линейные и циклические ускорители. В линейных ускорителях частицы движутся по прямолинейной траектории, в циклических — по окружности или спирали.

Наиболее известным циклическим ускорителем является циклотрон (рис. 17), в котором под действием магнитного поля индукции В, направленной перпендикулярно плоскости рисунка, заряженная частица движется по окружностям. Переменное электрическое поле между дуантами 1 ускоряет частицу. Согласно формуле , период Т вращения частицы не зависит от ее скорости и радиуса траектории, поэтому время прохождения частицей любой полуокружности в каждом дуанте одинаково. Оно соответствует половине периода колебаний электрического поля. Таким образом, магнитное поле обеспечивает вращение частицы по окружности, а электрическое поле -изменение ее кинетической энергии. Источник частиц 2 находится вблизи центра циклотрона, пучок ускоренных частиц 3 вылетает из циклотрона после ускорения.

Рис. 17 Рис.18

 

Циклотрон способен ускорять протоны до 20—25 МэВ. Ограничение энергии ускоряемых частиц обусловлено релятивистской зависимостью массы от скорости. Так как масса увеличивается с возрастанием скорости, то период вращения частицы будет также возрастать. В результате этого нарушится синхронность между движением частицы и изменением электрического поля. Электрическое поле будет не ускорять, а замедлять частицы. В связи с этим в циклотроне нельзя ускорять электроны, так как они быстро достигают релятивистских скоростей.

Из этого затруднения можно найти выход, изменяя частоту электрического поля в соответствии с изменением периода вращения заряженной частицы. Такой ускоритель называют фазотроном (синхроциклотроном), он способен ускорять протоны до энергии 730 МэВ.

Можно предположить и другое решение вопроса: по мере возрастания массы увеличивать индукцию магнитного поля. Как видно из , в этом случае можно сохранить период вращения частицы неизменным. Ускоритель такого типа называют синхротроном.

Для ускорения тяжелых частиц до энергий порядка гигаэлектрон-вольт и выше используют синхрофазотрон, в котором изменяют и магнитное поле, и частоту электрического поля. Синхрофазотрон, работающий в Дубне, ускоряет протоны до 10 ГэВ, серпуховской синхрофазотрон — до 76 ГэВ.

Довольно распространенным ускорителем электронов невысоких энергий является бетатрон. В отличие от других циклических ускорителей в нем электрическое поле не подается от внешних источников, а создается при изменении магнитного поля.

На рис. 18, а схематически показано, что при изменении магнитного поля электромагнита 7 возникает, согласно теории Максвелла, вихревое электрическое поле. В зазоре 2 магнита расположена вакуумная камера, в которой ускоряются электроны. Силовые линии электрического поля в виде концентрических окружностей расположены в плоскости, перпендикулярной плоскости рис. 18, а. На рис. 18, б изображена отдельная линия напряженности электрического поля, которая приближенно совпадает с траекторией электрона. На этом рисунке линии вектора В в основном перпендикулярны плоскости чертежа, магнитная индукция возрастает.

Электрон удерживается на орбите магнитным полем (сила Лоренца) и ускоряется электрическим. Бетатроны способны ускорять электроны до десятков мегаэлектрон-вольт. В настоящее время бетатроны используют главным образом в прикладных целях, в том числе и медицинских.

Ускорители заряженных частиц применяют как средства лучевой терапии в двух основных направлениях.

Во-первых, используют тормозное рентгеновское излучение, возникающее при торможении электронов, ускоренных бетатроном. Фотон энергии тормозного излучения порядка нескольких десятков мегаэлектрон-вольт, что оказывается более эффективным, чем гамма-терапия.

Во-вторых, используют прямое действие ускоренных частиц: электронов, протонов. Электроны ускоряются бетатроном, а протонный пучок получают от других ускорителей. Как видно из рис. 3, заряженные частицы, в том числе и протоны, наибольшую ионизацию производят перед остановкой. Поэтому при попадании пучка протонов в биологический объект извне наибольшее воздействие будет оказано не на поверхностные слои, а на опухолевые ткани, которые расположены в глубине организма. В этом основная выгода применения заряженных частиц для лучевой терапии глубинных опухолей. Поверхностные слои в этом случае повреждаются минимально.

Малое рассеяние протонов позволяет формировать узкие пучки и таким образом, очень точно воздействовать на опухоль. Наряду с лечебным применением ускорителей в последние годы открылись возможности использования их в диагностике. Здесь можно указать две области.

Ионная медицинская радиография. Суть метода заключается в следующем. Пробег тяжелых заряженных частиц ( -частицы, протоны) зависит от плотности вещества. Поэтому если регистрировать поток частиц до и после прохождения объекта, то можно получить сведения о средней плотности вещества.

Таким образом, так же как и при рентгенографии, возможно различать структуры большей и меньшей плотности. Преимущество у этого метода перед рентгенографией — более низкая контрастность, что позволяет лучше различать структуру мягких тканей.

Применение синхротронного излучения. Синхротронным излучением называют интенсивное ультрафиолетовое и мягкое рентгеновское излучение, которое испускают электроны, движущиеся по круговой орбите со скоростями, близкими к скорости света. Впервые это излучение как световое наблюдалось на синхротронах, 'поэтому оно и называется синхротронным. Синхротронное излучение в целях диагностики применяют аналогично обычному рентгеновскому излучению. Одно из преимуществ синхротронного излучения перед рентгеновским заключается в возможности поглощения этого излучения преимущественно некоторыми элементами, например йодом, который может иметь повышенную концентрацию в тканях. Отсюда возникают условия для ранней диагностики злокачественных опухолей.

Отметим, что синхротронное излучение начинают также применять и в лучевой терапии.


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)