АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Общие сведения. Введение.Считается, что первый топливный элемент создал сэр Уильям Роберт Гроув (William Robert Grove)

Читайте также:
  1. I. ОБЩИЕ ПОЛОЖЕНИЯ
  2. I. ОБЩИЕ ПОЛОЖЕНИЯ
  3. I. ОБЩИЕ ПОЛОЖЕНИЯ
  4. I. ОБЩИЕ ПОЛОЖЕНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ
  5. I. Общие сведения
  6. I. ОБЩИЕ СВЕДЕНИЯ
  7. I. Общие требования безопасности.
  8. I. ОБЩИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ
  9. I. ОБЩИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ
  10. II ОБЩИЕ НАЧАЛА ПУБЛИЧНО-ПРАВОВОГО ПОРЯДКА
  11. II. Общие требования
  12. III. Общие организационные мероприятия

Введение. Считается, что первый топливный элемент создал сэр Уильям Роберт Гроув (William Robert Grove). Еще в 1839 г. этот выпускник Оксфорда показал, что процесс электролиза –расщепление воды на водород и кислород под действием электрического тока – является обратимым. Иными словами, водород и кислород могут быть соединены химическим путем с образованием электрических зарядов. Построенная Гроувом установка была довольно проста: два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходил не взрыв, а медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Дальнейшие исследования выявили преимущества такого необычного элемента перед простыми химическими источниками тока (гальваническими элементами и аккумуляторами). Дело в том, что топливные элементы обладали в 5–10 раз большей энергоемкостью. К тому же во время реакции не происходило изменений материала электродов и электролита. Топливный элемент теоретически может работать неограниченно долго – необходимо лишь регулярно подавать исходные газовые компоненты.

Надо заметить, что поскольку топливные элементы могут работать с высоким КПД и без вредных выбросов, с ними связаны большие надежды на создание экологически рационального источника энергии, который мог бы способствовать снижению выбросов парниковых газов и других загрязняющих веществ. До недавнего времени основным препятствием на пути широкомасштабного использования топливных элементов была их высокая стоимость по сравнению с другими устройствами, вырабатывающими электричество или приводящими в движение транспортные средства.

Всплеск развития топливных элементов пришелся на середину прошлого столетия, когда специалисты НАСА обратились к ним в связи с возникшей потребностью в компактных электрогенераторах для использования во время космических полетов. В частности, космические корабли Apollo и Gemini были оснащены подобными источниками энергии.

К концу XX века было разработано множество конструкций топливных элементов, различавшихся своими параметрами. За счет применения различных материалов для электродов, специального электролита, а также добавления катализаторов, стимулирующих протекание главной реакции, ученые нашли способ изменить конструкцию топливных элементов так, чтобы использовать вместо чистого водорода содержащие его вещества – углеводороды (природный газ и спирты). Так появились щелочные (Аlkaline Fuel Cell, AFC), твердотельные (Solid Oxid Fuel Cell, SOFC), полимерные (PEFC), фосфорно-кислотные (PEFC) и даже спиртсодержащие (Direct Alcohol Fuel Cell, DAFC) топливные элементы. Рабочая температура для разных топливных элементов варьируется в довольно широком диапазоне, а КПД некоторых из них может достигать 80%.

Работа топливного элемента. Как уже отмечалось, топливные элементы похожи на традиционные химические источники тока (гальванические батареи и аккумуляторы): все они вырабатывают электричество в результате химической реакции. Однако при этом аккумуляторные батареи и топливные элементы выполняют две совершенно разные функции. Обычные химические источники тока – устройства с накопленной энергией. Электричество, которое они вырабатывают, является результатом химической реакции вещества, которое уже находится внутри них. Топливные элементы не хранят, а преобразуют часть энергии топлива, поставляемого извне, в электричество. В этом отношении топливный элемент скорее похож на обычную электростанцию.

Таким образом, можно выделить два основных отличия топливных элементов:

1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника;

2) химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке).

Простейший топливный элемент (рисунок 1) состоит, например, из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды.

 

Рисунок 1 – Принцип действия топливного элемента.

 

Такая конструкция (электролит, окруженный двумя электродами) представляет собой отдельный элемент. Водород поступает на одну сторону (анод), а кислород (воздух) – на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

 

2H2 → 4H+ + 4e, (1)

 

где H2 – двухатомная молекула водорода (форма, в которой водород присутствует в виде газа);

H+ – ионизированный водород (протон);

е – электрон.

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны – нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка).

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

 

4H+ + 4e + O2 → 2H2O. (2)

 

Суммарная реакция в топливном элементе записывается так:

 

2H2 + O2 →2H2O. (3)

 

В своей работе топливные элементы используют водородное топливо и кислород из воздуха. Водород может подаваться непосредственно или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта – метанола. В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Процесс, происходящий в водородно-кислородном топливном элементе, по своей природе является обратным хорошо известному процессу электролиза, при котором происходит диссоциация воды при прохождении через электролит электрического тока. Действительно, в отдельных типах топливных элементов процесс может быть обратимым: приложив к электродам напряжение, можно разложить воду на водород и кислород, собираемые на электродах. Если прекратить зарядку элемента и подключить к нему нагрузку, такой регенеративный топливный элемент сразу начнет работать в нормальном режиме.

По отдельности топливные элементы создают электродвижущую силу около 1 В каждый. Чтобы увеличить напряжение, элементы соединяют последовательно. Если требуется выдать больший ток, наборы каскадных элементов соединяют параллельно.

Стоит еще раз отметить, что КПД топливных элементов может оставаться на довольно высоком уровне, даже когда они работают не на полную номинальную мощность. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество. Модульный принцип устройства топливных элементов означает, что мощность источника на них можно увеличить, просто добавив еще несколько каскадов. Это обеспечивает минимизацию коэффициента недоиспользования мощности, что позволяет приводить в соответствие спрос и предложение. При применении топливных элементов практически не бывает вредных выбросов. Ведь при работе двигателя на чистом водороде в качестве побочных продуктов образуются только тепло и чистый водяной пар.

 


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)