АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Рассмотрим свойства математического ожидания

Читайте также:
  1. F. Метод, основанный на использовании свойства монотонности показательной функции .
  2. I. Размеры и тинкториальные свойства волокон
  3. II. Свойства векторного произведения
  4. III. Психические свойства личности – типичные для данного человека особенности его психики, особенности реализации его психических процессов.
  5. V2: Электрические и магнитные свойства вещества
  6. Адаптивн. и рациональн. ожидания.
  7. Аденовирусы, морфология, культуральные, биологические свойства, серологическая классификация. Механизмы патогенеза, лабораторная диагностика аденовирусных инфекций.
  8. Аксиомы ординалистского подхода. Функция полезности и кривые безразличия потребителя. Свойства кривых безразличия. Предельная норма замещения
  9. Акустические свойства голоса
  10. Акустические свойства горной породы.
  11. Акустические свойства строительных материалов
  12. Алгебраические свойства векторного произведения

1. Математическое ожидание постоянной величины равно са­мой постоянной: .

□ Постоянную величину С можно рассматривать как величину, принимающую значение С с вероятностью 1. Поэтому М(С) = С·1 = 1.■

2. Постоянный множитель можно выносить за знак математического ожидания, т.е. M(kX) = kM(X).

□ Так как случайная величина kX принимает значения kxi (i = 1,2,...,n), то

3. Математическое ожидание алгебраической суммы конечного числа случайных величин равно такой же сумме их математических ожиданий, т.e. М (Х ± У) = М(Х) ± М(У).

□ В соответствии с определением суммы и разности случайных величин Х+У (Х-У) представляют случайную величину, которая принимает значения xi+yj (xi-yj) (i = 1,2,...,n) (j = 1,2,...,m) с вероятностями рij = Р[(Х = хi)(У = yj)].

Поэтому .

Так как в первой двойной сумме xi не зависит от индекса j, по которому ведется суммирование во второй сумме, и аналогично во второй двойной сумме yj не зависит от индекса i, то

.■

4. Математическое ожидание произведения конечного числа независимых случайных величин равно произведению их математических ожиданий: М(ХУ) = М(Х)М(У).

□ В соответствии с определением произведения случайных величин, ХУ представляет собой случайную величину, которая принимает значения xiyi (i = 1,2,...,n) (j = 1,2,...,m) с вероятностями Рij = P[(Х = хi)(У = yj)], причем в силу независимости Х и Уpij = pipj. Поэтому .■

5. Если все значения случайной величины увеличить (уменьшить) на постоянную С, то на эту же постоянную С увеличится (уменьшится) математическое ожидание этой случайной величины:М(Х ± С) = М(Х) ± С.

□ Учитывая свойства 3 и 1 математического ожидания, получим М(Х ± С) = М(Х) ± М(С) = М(Х) ± С.■

6. Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю: М[Х-М(Х)] =0.

□ Пусть постоянная С есть математическое ожидание а = М(Х), т.е. С = а. Тогда, используя свойство 5, получим

М(Х - а) = М(Х) - а = а - а = о. ■

 

13. Математические операции над дискретными случайными величинами. Примеры построения законов распределения для kХ, Х2, Х + Y, XY по заданным распределениям независимых случайных величин Х и Y.

Определим математические операции над дискретными случайными величинами.

Пусть даны две случайные величины:

Х:

xi х1 х2 хn
pi p1 p2 pn

 

У:

уj y1 y2 ym
Pj p1 p2 pm

 

 

Произведением kX случайной величины Х на постоянную величину k называется случайная величина, которая принимает значения kxi с теми же вероятностями рi (i = 1,2,...,n).

m-й степенью случайной величины Х, т.е. , называется случайная величина, которая принимает значения с теми же вероятностями рi (i = 1,2,...,n).

Суммой (разностью или произведением) случайных величин Х и У называется случайная величина, которая принимает все возможные значения вида хi+уj (хj-уj или хj·уj), где i = l,2,...,n; j =1,2,...,m, с вероятностями pij того, что случайная величина Х примет значение xi, а у - значение yj:

.

Если случайные величины Х и У независимы, т.е. независимы любые события Х=хi, Y=yj то по теореме умножения вероятностей для независимых событий

.

3амечание. Приведенные выше определения операций над дискретными случайными величинами нуждаются в уточнении: так как в ряде случаев одни и те же значения , , могут получаться разными способами при различных xi, yj с вероятностями pi, pij, то вероятности таких повторяющихся значений находятся сложением полученных вероятностей pi или pij.

Вид операции Выражение знач. Сл\в Выр знач вер-ти
не изм-ся
не изм-ся
x+y
xy

 

 


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)