АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

при доказательстве неравенств

Читайте также:
  1. II Неравенства.
  2. А) Безграничное конкретное множество; b) равенство (неравенство).
  3. Билет 22Понятие евклидова пространства, неравенство Коши-Буняковского. Теорема Кронекера Капелли.
  4. В. Измерение неравенства доходов
  5. Вопрос 22. Экономическое неравенство. Кривая Лоренца. Государственная политика социальной защиты населения в Украине
  6. Второе начало термодинамики. Самопроизвольные и несамопроизвольные процессы. Равенство и неравенство Клаузиуса.
  7. Дадим геометрическое истолкование задачи, используя для этого её формулировку с ограничениями-неравенствами
  8. Доходы населения, виды доходов. Проблема неравенства доходов. Кривая Лоренца.
  9. Доходы населения, источники их формирования (трудовые и нетрудовые, легальные и нелегальные) и распределение. Неравенство доходов и их причины
  10. Доходы населения. Показатель неравенства в распределении доходов.
  11. ДОХОДЫ НАСЕЛЕНИЯ. ПРОБЛЕМА НЕРАВЕНСТВА ДОХОДОВ
  12. Доходы населения: виды, источники. Неравенство доходов. Кривая Лоренца. Коэффициент Джини. Распределение и доходы.

Использование основных теорем дифференциального исчисления

ТЕОРЕМА 1 (Ролля). Пусть функция f:[a,b]®R удовлетворяет условиям:

1) fÎC[a,b]; 2) "xÎ(a,b) существует f/(x); 3) f(a)=f(b). Тогда $CÎ(a,b): f/(C)=0.

Геометрический смысл теоремы Ролля: при выполнении условий 1)-3) теоремы на интервале (a,b) существует точка С, в которой касательная к графику функции параллельна оси абсцисс. На практике чаще используется следующее утверждение теоремы Ролля: между любыми двумя нулями дифференцируемой функции существует хотя бы один нуль у производной.

ТЕОРЕМА 2 (Лагранжа про среднее значение, или про конечное приращение). Допустим что функция f:[a,b]®R удовлетворяет условиям:

1) fÎC[a,b]; 2) "xÎ(a,b) существует f/(x). Тогда $CÎ(a,b): f(b)-f(a)=f/(C)(b-a).

Отношение (f(b)-f(a))/(b-a) есть тангенс угла наклона к оси абсцисс секущей, которая проходит через точки (a, f(a)), (b, f(b)). Геометрический смысл теоремы Лагранжа: при выполнении условий 1)-2) теоремы на интервале (a,b) существует точка С, в которой касательная к графику функции в точке (C, f(C)) параллельна секущей.

Следствие 1. Пусть функція f:[a,b]®R имеет производную f/ на (a,b) і "xÎ(a,b) f/(x)=0. Тогда для некоторого LÌ R "xÎ(a,b) f(x)=L.

Следствие 2. Функции f:[a,b]®R, g:[a,b]®R имеют произодныеі f/ и g/ на (a,b) и "xÎ(a,b) f/(x)=g/(x). Тогда для некоторого числа LÌ R "xÎ(a,b): f(x)=g(x)+L.

Следствие 3. Пусть функция f:[a,b]®R имеем производную f/ на (a,b) и для некоторого LÌ R "xÎ(a,b) f/(x)=L. Тогда для некоторого MÌ R "xÎ(a,b): f(x)=Lx+M.

ТЕОРЕМА 3 (Коши). Пусть функции f:[a,b]®R, g:[a,b]®R удовлетворяют условиям: 1) f, gÎC[a,b]; 2) "xÎ(a,b) существуют производныеі f/ и g/; 3) "xÎ(a,b) g/(x)¹0.

Тогдаі $CÎ(a,b): (f(b)-f(a))/(g(b)-g(a))=f/(C)/g/(C).

Теорема Лагранжа – это частный случай теоремы Коши при g(x)=x, xÎ[a,b].

Покажем, как с помощью производной можно решать вопросы существова-ния корней уравнения, а в некоторых случаях и их отыскания. По-прежнему основную роль здесь будут играть исследования функции на монотонность, нахождение ее экстремальных значений. Кроме того, будет использован ряд свойств монотонных и непрерывных функций.

Свойство 1. Если функция f возрастает или убывает на некотором промежутке, то на этом промежутке равнение f(x)=0 имеет не более одного корня.

Это утверждение вытекает непосредственно из определения возрастающей и убывающей функций. Корень уравнения f(x)=0 равен абсциссе точки пересечения графика функции y=f(x) с осью x.

Свойство 2. Если функция f определена и непрерывна на промежутке [a,b] и на его концах принимает значения разных знаков, то между a и b найдется точка c, в которой f(c)=0.

Задача 1.12. Решить уравнение

Решение.

Заметим, что является корнем уравнения. Докажем, что других корней это уравнение не имеет. Исследуем функцию f, где , на монотонность. Производная . Установим промежутки, на которых функция сохраняет знак. Для этого исследуем ее на монотонность. Производная . Так как при , то при . Следовательно, функция возрастает при положительных значениях x; . Поэтому при . В силу четности функции она принимает положительные значения при всех . Следовательно, f возрастает на всей числовой оси. Согласно свойству 1, уравнение имеет не более одного корня. Итак, – единственный корень уравнения.

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)