АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Электростатические явления в веществе. Поляризация вещества. Свободные и связанные заряды. Сегнетоэлектрики

Читайте также:
  1. Адсорбция ионов на кристалле. Электрокинетические явления
  2. Активные формы кислорода (свободные радикалы)
  3. Аллергический диатез, клинические проявления. Лечение и профилактика.
  4. Бихевиоризм и проблема объективного проявления психики
  5. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Энергия конденсатора в произвольный момент времени t определяется выражением
  6. Вектор электрического смещения ( электрической индукции) D. Обобщение теоремы Гаусса для вещества.
  7. Взаимодействие тел. Сила. Принцип суперпозиции сил. Проявления взаимодействия тел. Сила
  8. Взрывоопасные предметы. Взрывчатые вещества. Демаскирующие признаки взрывных устройств и предметов. Профилактический осмотр территорий и помещений.
  9. ВМЕШАТЕЛЬСТВО ДЕМОНОВ В СОВРЕМЕННЫХ ПРОЯВЛЕНИЯХ
  10. Внешние проявления нейрофиброматоза (дизморфоз структур лица, пигментные пятна на коже)
  11. Возможные риски и проблемы связанные с реализацией проекта
  12. Возрастные особенности проявления различных видов воображения


Если поместить диэлектрик во внешнее электрическое поле, то он поляризуется, т. е. получит неравный нулю дипольный момент pV=∑piгде pi — дипольный момент одной молекулы. Чтобы произвести количественное описание поляризации диэлектрика вводят векторную величину — поляризованность, которая определяется как дипольный момент единицы объема диэлектрика:

(1)

Из опыта известно, что для большого класса диэлектриков (за исключением сегнетоэлектриков, см. далее) поляризованность Р зависит от напряженности поля Е линейно . Если диэлектрик изотропный и Е численно не слишком велико, то

(2)

где θ — диэлектрическая восприимчивость вещества, она характеризует свойства диэлектрика; θ – безразмерная величина; притом всегда θ>0 и для большинства диэлектриков (жидких и твердых) составляет несколько единиц (но, например, для спирта θ≈25, для воды θ≈80).

Для определения количественных закономерностей электрического поля в диэлектрике поместим в однородное внешнее электрическое поле Е0 (к примеру, между двумя бесконечными параллельными разноименно заряженными плоскостями) пластинку из однородного диэлектрика, расположив ее, согласно рис. 1. Под действием поля диэлектрик поляризуется, т. е. осуществляется смещение зарядов: положительные смещаются по направлению поля, отрицательные — против направления поля. В результате, на правой грани диэлектрика, который обращен к отрицательной плоскости, будет избыток положительного заряда с поверхностной плотностью +σ', на левой грани — отрицательного заряда с поверхностной плотностью –σ'. Эти нескомпенсированные заряды, которые появляются в результате поляризации диэлектрика, называются связанными. Поскольку их поверхностная плотность σ' меньше плотности σ свободных зарядов плоскостей, то не все поле Е компенсируется полем зарядов диэлектрика: часть линий напряженности проходит сквозь диэлектрик, другая же часть — останавливается на связанных зарядах. Значит, поляризация диэлектрика вызывает уменьшение в нем поля по сравнению с первоначальным внешним полем. Вне диэлектрика Е = Е0.


 

Рис.1

 

Значит, возникновение связанных зарядов приводит к появлению дополнительного электрического поля Е' (поля, которое создается связанными зарядами), направленого против внешнего поля Е0 (поля, которое создается свободными зарядами) и ослабляет его. Результирующее поле внутри диэлектрика



Поле Е'=σ'/ε0 (поле, созданное двумя бесконечными заряженными плоскостями), значит

(3)

Найдем поверхностную плотность связанных зарядов σ'. Согласно (1), полный дипольный момент пластинки диэлектрика pV=PV=PSd, где d — толщина пластинки, S — площадь ее грани. С другой стороны, полный дипольный момент, равен произведению связанного заряда каждой грани Q' =σ'S на расстояние d между ними, т. е. рV = σ'Sd. Значит, PSd=σ'Sd, или

(4)

т. е. поверхностная плотность связанных зарядов σ' равна поляризованности Р. Подставив в формулу (3) выражения (4) и (2), получим

откуда напряженность результирующего поля внутри диэлектрика равна

(5)

Безразмерная величина

(6)

называется диэлектрической проницаемостью среды. Сравнивая (5) и (6), можем сделать вывод, что ε показывает, во сколько раз поле ослабляется диэлектриком, и характеризует количественно свойство диэлектрика поляризоваться в электрическом поле.

Сегнетоэлектрики — диэлектрики, которые обладают в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в условиях отсутствия внешнего электрического поля. К сегнетоэлектрикам относятся, например, подробно изученные И. В. Курчатовым (1903—1960) и П. П. Кобеко (1897—1954) сегнетова соль NaKC4H4O6•4Н2O (от нее и было получено данное название) и титанат бария ВаТiO3.

При отсутствии внешнего электрического поля сегнетоэлектрик есть как бы мозаика из доменов — областей с различными направлениями поляризованности. Это показано на примере титаната бария (рис. 1), где стрелки и знаки точек и плюсов в кружках указывают направление вектора Р. Так как в смежных доменах эти направления отличаются, то в целом дипольный момент диэлектрика равен нулю. При внесении во внешнее поле сегнетоэлектрика осуществляется переориентация дипольных моментов доменов по полю, а возникшее при этом суммарное электрическое поле доменов будет поддерживать их некоторую ориентацию и после прекращения действия внешнего поля. Поэтому сегнетоэлектрики имеют очень большие значения диэлектрической проницаемости (для сегнетовой соли, например, εmax≈104).

‡агрузка...

Сегнетоэлектрические свойства вществ сильно зависят от температуры. Для каждого сегнетоэлектрика есть определенная температура, выше которой его данные необычные свойства исчезают и он превращается в обычный диэлектрик. Эта температура называется точкой Кюри (в честь французского физика Пьера Кюри (1859—1906)). Обычно, сегнетоэлектрики обладают только одной точкой Кюри; исключение составляют лишь сегнетова соль (—18 и +24°С) и изоморфные с нею соединения. В сегнетоэлектриках вблизи точки Кюри наблюдается также резкое возрастание теплоемкости вещества. Превращение сегнетоэлектриков в обычный диэлектрик, которое происходит в точке Кюри, сопровождается фазовым переходом II рода.

Диэлектрическая проницаемость ε (а значит, и диэлектрическая восприимчивость θ) сегнетоэлектриков зависит от напряженности Еполя в веществе, при этом эти величины являются характеристиками вещества для других диэлектриков.

Для сегнетоэлектриков не соблюдается формула связи поляризованности и напряженности поля P=θε0E ; для них зависимость между векторами поляризованности (Р) и напряженности (Е) нелинейная и зависит от значений Е в предыдущие моменты времени. В сегнетоэлектриках наблюдается явление диэлектрического гистерезиса (запаздывания). Как видно из рис. 2, с ростом напряженности Е внешнего электрического поля поляризованность Р растет, достигая при этом насыщения (кривая 1). Уменьшение Р с уменьшением Е происходит по кривой 2, и при Е=0 сегнетоэлектрик сохраняет остаточную поляризованность Р0, т.е. сегнетоэлектрик остается поляризованным в отсутствие внешнего электрического поля. Чтобы уничтожить остаточную поляризованность, надо приложить внешнее электрическое поле обратного направления (—Eс). Величина Еc называется коэрцитивной силой (от лат. coercitio — удерживание). Если далее Е изменять, то Р изменяется по кривой 3 петли гистерезиса.

Росту изучения сегнетоэлектриков послужило открытие аномальных диэлектрических свойств титаната бария академиком Б. М. Вулом (1903—1985). Титанат бария из-за его высокой механической прочности и химической устойчивости, а также по причине сохранения сегнетоэлектрических свойств в широком температурном интервале нашел широкое научно-техническое применение (например, в качестве приемника и генератора ультразвуковых волн). В настоящее время известно более сотни сегнетоэлектриков, не считая их твердых растворов. Сегнетоэлектрики широко используются также в качестве материалов, которые обладают большими значениями ε (например, в конденсаторах).


 

Следует кратко рассказать еще о пьезоэлектриках — кристаллических веществах, в которых при растяжении или сжатии в некоторых направлениях возникает электрическая поляризация даже в отсутствие внешнего электрического поля (прямой пьезоэффект). Можно наблюдать и обратный пьезоэффект — появление механической деформации под действием электрического поля. У некоторых пьезоэлектриков в состоянии термодинамического равновесия решетка положительных ионов смещена относительно решетки отрицательных ионов, в результате чего они оказываются поляризованными даже в отсутствии внешнего электрического поля. Такие кристаллы называются пироэлектриками. Еще существуют электреты — диэлектрики, которые длительно сохраняют поляризованное состояние после снятия внешнего электрического поля (электрические аналоги постоянных магнитов). Эти вещества находят широкое применение в технике и бытовых устройствах.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |


При использовании материала, поставите ссылку на Студалл.Орг (0.008 сек.)