АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Поляризованные электромагнитные системы

Читайте также:
  1. I. Формирование системы военной психологии в России.
  2. II. Цель и задачи государственной политики в области развития инновационной системы
  3. II. Экономические институты и системы
  4. IV. Механизмы и основные меры реализации государственной политики в области развития инновационной системы
  5. А). Системы разомкнутые, замкнутые и комбинированные.
  6. А. И. Герцен – основатель системы вольной русской прессы в эмиграции. Литературно-публицистическое мастерство
  7. Абиотические компоненты экосистемы.
  8. Абстрактные линейные системы
  9. Автоматизированные системы контроля за исполнением документов
  10. Автоматизированные системы контроля и учета электроэнергии (АСКУЭ).
  11. Автоматизированные системы регистрации
  12. Автоматизированные системы управления (АСУ).

 

Поляризованные электромагнитные системы отличаются от рассмотренных выше наличием двух не зависящих друг от друга магнитных потоков: постоянного, не зависящего от состояния схемы, в которую включен механизм, и переменного, зависящего от состояния схемы, в которую включен механизм. Первый, поляризующий, поток Фп создается либо постоянным магнитом (рис. 5-13, а), либо электромагнитом с независимым питанием. Второй, рабочий, поток

ФЭ создается электромагнитом. Значение и направление рабочего потока зависят от состояния схемы, в которую включен механизм.

Принцип действия. Образованный магнитом 3 поляризующий поток Фп, пройдя через якорь 2, разветвляется. Одна его часть ФП1 проходит через зазор 1: и левую часть сердечника 1. Вторая его часть ФП2 проходит через зазор 2 и

 

 

Рис. 5-13. Принцип устройства поляризованной магнитной системы

 

правую часть сердечника. Катушками 4 и 4', надетыми на сердечник и включенными согласно, создается рабочий поток. Основная его часть Фэ замыкается через весь воздушный зазор 1: + 2 и сердечник, охватывая обе катушки. Меньшие части этого потока Ф4 и Ф 4 замыкаются через якорь, соответствующий воздушный зазор и часть сердечника, охватывая только одну катушку.

При наличии только одного поляризующего потока якорь отклонится к одному из полюсов магнита, так как с уменьшением зазора (в нашем примере 1) часть поляризующего потока в этом зазоре увеличится за счет уменьшения его доли в другом зазоре. При появлении рабочего потока в одном из зазоров будем иметь разность потоков, а в другом — сумму. В нашем примере в зазоре 1 — поток ФП1 — Фэ — Ф4, в зазоре 2 — поток Фп2 + Фэ + Ф4. По мере увеличения рабочего потока поток в зазоре 1 будет все уменьшаться, а в зазоре 2 — увеличиваться. При каком-то соотношении потоков якорь перекинется на правую сторону, т. е. система сработает.

Для возврата системы в исходное положение нужно изменить полярность тока (а, следовательно, и потока) в рабочих катушках. Можно настроить систему так, что якорь вернется в исходное положение при снижении рабочего потока и сохранении его полярности. Для этого необходимо, чтобы, перекинувшись вправо, якорь не переходил через нейтральное положение (рис. 5-13, б), т. е. чтобы при любом положении якоря один и тот же воздушный зазор оставался меньше другого (например, 1 < 2). Такая настройка называется настройкой на преобладание. В магнитной системе (рис. 5-13, в) якорь в зависимости от полярности тока в рабочей катушке может отклоняться в ту или другую сторону. При обесточенной катушке якорь вернется в нейтральное положение.

Расчет тяговых сил. Считаем, что индукция распределена в зазорах равномерно, и расчет будем вести, используя формулу Максвелла. Силы, действующие на якорь в зазорах 1 и 2 от всех потоков, обозначим соответственно P1 и Р2.

При наличии только поляризующего потока

 

P1 = ; P2 = . (5.58)

 

Суммарная сила, действующая на якорь,


 

P = P1 - P2 = . (5.59)

 

Учитывая, что Фп1 + Фп2 = Фп можем написать

 

= ; Фп1 = ;; Фп2 = (5-60)

Тогда

P = P1 - P2 = . (5.61)

 

т. е. суммарная сила, действующая на якорь, пропорциональна смещению якоря от нейтрали [( 2 1)/2 — смещение] и зависит от потока постоянного магнита.

При наличии рабочего потока

 

P1 = ; P2 = . (5.62)

 

Потоками Ф4 и Ф'4 можем пренебречь, так как постоянный магнит представляет для них большое сопротивление и они малы по сравнению с другими потоками. Тогда

 

P1 = ; P2 = . (5.63)

 

 

(8-63)

Нас интересует значение потока Фэ, при котором якорь начнет перемещаться. Это будет при условии, когда Р1 = Р2, т. е.

 

= . (5.64)

 

Откуда

ФЭ = П1 - ФП2). (5.65)

 

Если пренебречь потерями в стали сердечника и потоками рассеяния, то минимальная МДС Fmin, при которой якорь придет в движение, будет

 

FЭ min = . (5.66)


 

Подставляя значения Фп1 и Фп2 согласно выражению (8-3)v получим

FЭ min = ФП . (5-67)

 

т. е. минимальная МДС рабочих катушек, необходимая для срабатывания системы, пропорциональна поляризующему потоку и смещению якоря от нейтрали.

Формы магнитных систем. По источнику МДС поляризующего поля различают систему с постоянным магнитом и системы с электромагнитом, питаемым от независимого источника.

По конструкции различают системы с последовательной магнитной цепью, с параллельной, или дифференциальной, магнитной цепью и с мостовой магнитной цепью. В мостовой магнитной цепи якорь остается в нейтральном положении при отсутствии тока в рабочих обмотках.

Область применения. Поляризованные системы находят широкое применение в установках проводной связи, а также в устройствах электросиловой автоматики, релейной защиты, в следящих системах, системах телеуправления, железнодорожной сигнализации и блокировки. Особенностями этих систем являются направленность действия, высокая чувствительность, большая кратность термической стойкости, быстродействие.

 


 

ЛЕКЦИЯ № 17

 

6.1. Предохранители низкого напряжения

 

6.1.1. Назначение, принцип действия и устройство предохранителя;

физические явления в электрическом аппарате.

6.1.2. Параметры предохранителя.

6.1.3. Конструкция предохранителей.

6.1.4. Предохранители с гашением дуги в закрытом объёме.

6.1.5. Предохранители с мелкозернистым наполнителем (серии ПН-2, ПРС).

6.1.6. Предохранители с жидкометаллическим контактом.

6.1.7. Быстродействующие предохранители для защиты полупроводниковых

приборов.

6.1.8. Предохранитель - выключатель.

6.1.9. Выбор, применение и эксплуатация предохранителя для защиты

электродвигателя и полупроводниковых устройств.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)