АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вычисление конечных и бесконечных сумм и произведений

Читайте также:
  1. Авторское право - правовое положение авторов и созданных их творческим трудом произведений литературы, науки и искусства.
  2. Б) Вычисление тригонометрических функций.
  3. Вычисление всех собственных значений положительно определенной симметрической матрицы
  4. Вычисление и интерпретация параметров парной линейной регрессии
  5. Вычисление определенного интеграла методом трапеций
  6. Вычисление относительных показателей в процессе оценки
  7. Вычисление площади плоских фигур.
  8. Вычисление потенциальной энергии
  9. Вычисление пределов.
  10. Вычисление скалярного произведения векторов через их координаты. Длина вектора. Угол между векторами.
  11. Вычисление собственных значений и собственных векторов матриц.
← 27.0. Введение 28.2. Решение уравнений итерационными методами →

Для расчета суммы (где Ck - некоторое слагаемое, зависящее от индекса суммирования k) рационально использовать цикл по переменной – индексу суммирования. Блок схема алгоритма представлена на рис. 28.1 а.

На том же рисунке представлена блок-схема расчета произведения , где Ck - сомножитель, зависящий от индекса суммирования k.

Эти алгоритмы очень похожи. Только при вычислении суммы переменной S, накапливающей ее, первоначально присваивается нулевое значение, а переменной P, накапливающей произведение – единичное. В теле цикла производится расчет слагаемого (сомножителя), а за-тем суммированием (умножением) накапливается сумма (произведение).

Вычисление бесконечных сумм возможно только для сходящихся рядов, например, . С ростом k каждое слагаемое должно уменьшаться и сумма стремиться к определенному значению. Цикл суммирования можно прекратить, когда очередное слагаемое по абсолютной величине станет меньше заданной величины . Так как в этом случае обычно нельзя заранее вычислить число повторений, следует использовать цикл с предусловием или цикл с послеусловием. Их блок-схемы приведены на рис. 28.2.

Перед началом циклов выполняются начальные установки: счетчик циклов k – индекс суммирования и переменная S, накапливающая сумму, обнуляются. В теле цикла сначала индекс суммирования увеличивается на единицу, а затем вычисляется слагаемое и накапливается сумма. Условием повторения цикла является | Ck| ≥ ε. Перед началом цикла с предусловием переменной Ck - слагаемому, значение которого вычисляется в теле цикла, необходимо присвоить такое начальное значение, чтобы условие повторения цикла выполнялось. В цикле с послеусловием этого не требуется.

Аналогично можно представить алгоритмы расчета бесконечных произведений, сходящихся к определенному значению.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |


При использовании материала, поставите ссылку на Студалл.Орг (0.004 сек.)