АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Как представляются в компьютере вещественные числа?

Читайте также:
  1. Алгоритмизация решения задач на компьютере
  2. Вещественные демаскирующие признаки
  3. Вещественные доказательства
  4. Вещественные источники
  5. Подготовка документов на компьютере
  6. Представление в компьютере текстовой информации
  7. Представление чисел в компьютере
Вещественными числами (в отличие от целых) в компьютерной технике называются числа, имеющие дробную часть.

При их написании вместо запятой принято писать точку. Так, например, число 5 — целое, а числа 5.1 и 5.0 — вещественные.

Для удобства отображения чисел, принимающих значения из достаточно широкого диапазона (то есть, как очень маленьких, так и очень больших), используется форма записи чисел с порядком основания системы счисления. Например, десятичное число 1.25 можно в этой форме представить так:

1.25*100 = 0.125*101 = 0.0125*102 = ... ,

или так:

12.5*10–1 = 125.0*10–2 = 1250.0*10–3 = ... .

Любое число N в системе счисления с основанием q можно записать в виде N = M * qp, где M называется мантиссой числа, а p — порядком. Такой способ записи чисел называется представлением с плавающей точкой.

Если “плавающая” точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Из этого следует:

Мантисса должна быть правильной дробью, первая цифра которой отлична от нуля: M из [0.1, 1).

Такое, наиболее выгодное для компьютера, представление вещественных чисел называется нормализованным.

Мантиссу и порядок q-ичного числа принято записывать в системе с основанием q, а само основание — в десятичной системе.

Примеры нормализованного представления:

Десятичная система Двоичная система

753.15 = 0.75315*103; -101.01 = -0.10101*211 (порядок 112 = 310)

-0.000034 = -0.34*10-4; -0.000011 = 0.11*2-100 (порядок -1002 = -410)

Вещественные числа в компьютерах различных типов записываются по-разному. При этом компьютер обычно предоставляет программисту возможность выбора из нескольких числовых форматов наиболее подходящего для конкретной задачи — с использованием четырех, шести, восьми или десяти байтов.

В качестве примера приведем характеристики форматов вещественных чисел, используемых IBM-совместимыми персональными компьютерами:

Форматы вещественных чисел Размер в байтах Примерный диапазон абсолютных значений Количество значащих десятичных цифр
Одинарный 10–45 … 1038 7 или 8
Вещественный 10–39 … 1038 11 или 12
Двойной 10–324 … 10308 15 или 16
Расширенный 10–4932 … 104932 19 или 20

Из этой таблицы видно, что форма представления чисел с плавающей точкой позволяет записывать числа с высокой точностью и из весьма широкого диапазона.



При хранении числа с плавающей точкой отводятся разряды для мантиссы, порядка, знака числа и знака порядка:

· Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. · Чем больше разрядов занимает порядок, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в машине при заданном формате.

Покажем на примерах, как записываются некоторые числа в нормализованном виде в четырехбайтовом формате с семью разрядами для записи порядка.

1. Число 6.2510 = 110.012 = 0,11001•211 :

2. Число –0.12510 = –0.0012 = –0.1*2–10 (отрицательный порядок записан в дополнительном коде):


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 |


При использовании материала, поставите ссылку на Студалл.Орг (0.009 сек.)