АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

I. Решение логических задач средствами алгебры логики

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. I. Розв’язати задачі
  3. I. Ситуационные задачи и тестовые задания.
  4. II. Основные задачи и функции
  5. II. Решение логических задач табличным способом
  6. II. ЦЕЛИ, ЗАДАЧИ И ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ ВОИ
  7. II. Цель и задачи государственной политики в области развития инновационной системы
  8. III. Разрешение споров в международных организациях.
  9. III. Решение логических задач с помощью рассуждений
  10. III. Цели и задачи социально-экономического развития Республики Карелия на среднесрочную перспективу (2012-2017 годы)
  11. IV. Определите, какую задачу взаимодействия с практическим психологом поставил перед собой клиент.

Обычно используется следующая схема решения:

  1. изучается условие задачи;
  2. вводится система обозначений для логических высказываний;
  3. конструируется логическая формула, описывающая логические связи между всеми высказываниями условия задачи;
  4. определяются значения истинности этой логической формулы;
  5. из полученных значений истинности формулы определяются значения истинности введённых логических высказываний, на основании которых делается заключение о решении.

Пример 1. Трое друзей, болельщиков автогонок "Формула-1", спорили о результатах предстоящего этапа гонок.

— Вот увидишь, Шумахер не придет первым, — сказал Джон. Первым будет Хилл.

— Да нет же, победителем будет, как всегда, Шумахер, — воскликнул Ник. — А об Алези и говорить нечего, ему не быть первым.

Питер, к которому обратился Ник, возмутился:

— Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину.

По завершении этапа гонок оказалось, что каждое из двух предположений двоих друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто выиграл этап гонки?

Решение. Введем обозначения для логических высказываний:

Ш — победит Шумахер; Х — победит Хилл; А — победит Алези.

Реплика Ника "Алези пилотирует самую мощную машину" не содержит никакого утверждения о месте, которое займёт этот гонщик, поэтому в дальнейших рассуждениях не учитывается.

Зафиксируем высказывания каждого из друзей:

Учитывая то, что предположения двух друзей подтвердились, а предположения третьего неверны, запишем и упростим истинное высказывание

Высказывание истинно только при Ш=1, А=0, Х=0.

Ответ. Победителем этапа гонок стал Шумахер.

Пример 2. Некий любитель приключений отправился в кругосветное путешествие на яхте, оснащённой бортовым компьютером. Его предупредили, что чаще всего выходят из строя три узла компьютера — a, b, c, и дали необходимые детали для замены. Выяснить, какой именно узел надо заменить, он может по сигнальным лампочкам на контрольной панели. Лампочек тоже ровно три: x, y и z.

Инструкция по выявлению неисправных узлов такова:

  1. если неисправен хотя бы один из узлов компьютера, то горит по крайней мере одна из лампочек x, y, z;
  2. если неисправен узел a, но исправен узел с, то загорается лампочка y;
  3. если неисправен узел с, но исправен узел b, загорается лампочка y, но не загорается лампочка x;
  4. если неисправен узел b, но исправен узел c, то загораются лампочки x и y или не загорается лампочка x;
  5. если горит лампочка х и при этом либо неисправен узел а, либо все три узла a, b, c исправны, то горит и лампочка y.

В пути компьютер сломался. На контрольной панели загорелась лампочка x. Тщательно изучив инструкцию, путешественник починил компьютер. Но с этого момента и до конца плавания его не оставляла тревога. Он понял, что инструкция несовершенна, и есть случаи, когда она ему не поможет.



Какие узлы заменил путешественник? Какие изъяны он обнаружил в инструкции?

Решение. Введем обозначения для логических высказываний:

a — неисправен узел а; x — горит лампочка х;

b — неисправен узел b; y — горит лампочка y;

с — неисправен узел с; z — горит лампочка z.

Правила 1–5 выражаются следующими формулами:

Формулы 1–5 истинны по условию, следовательно, их конъюнкция тоже истинна:

Выражая импликацию через дизъюнкцию и отрицание (напомним, что ), получаем:

Подставляя в это тождество конкретные значения истинности x=1, y=0, z=0, получаем:

Отсюда следует, что a=0, b=1, c=1.

Ответ на первый вопрос задачи: нужно заменить блоки b и c; блок а не требует замены. Ответ на второй вопрос задачи получите самостоятельно.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)