АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тема: Развитие понятия числа

Читайте также:
  1. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  2. I. Развитие аналитических техник
  3. II. Развитие политической рекламы и PR.
  4. III.I. ПОНЯТИЯ «КАРТИНА МИРА» И «ПАРАДИГМА». ЕСТЕСТВЕННОНАУЧНАЯ И ФИЛОСОФСКАЯ КАРТИНЫ МИРА.
  5. IV. Коммуникативное развитие
  6. V1: Социально-политическое и экономическое развитие России в конце XV 1 страница
  7. V1: Социально-политическое и экономическое развитие России в конце XV 10 страница
  8. V1: Социально-политическое и экономическое развитие России в конце XV 11 страница
  9. V1: Социально-политическое и экономическое развитие России в конце XV 12 страница
  10. V1: Социально-политическое и экономическое развитие России в конце XV 13 страница
  11. V1: Социально-политическое и экономическое развитие России в конце XV 14 страница
  12. V1: Социально-политическое и экономическое развитие России в конце XV 2 страница

Лекция № 2,3.

1.1 Натуральные числа и дроби.

1.2 Введение и применение отрицательных чисел.

1.3 Развитие понятия действительного числа.

1.4 Комплексные числа

 

1.1 НАТУРАЛЬНЫЕ ЧИСЛА И ДРОБИ

Число - важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие числа изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним расширения круга вопросов, требовавшего количественного описания и исследования. На первых ступенях развития понятие числа определялось потребностями счёта и измерения, возникавшими в непосредственной практической деятельности человека. Затем число становится основным понятием математики, и дальнейшее развитие понятия числа определяется потребностями этой науки.

Потребность счета предметов привела к возникновению понятия натурального числа. Все народы, обладавшие письменностью, владели понятием натурального числа и пользовались той или иной системой счисления. О ранних этапах возникновения и развития понятия числа, можно судить лишь на основе косвенных данных, которые доставляют языкознание и этнография. Первобытному человеку, видимо, не требовалось умение считать, чтобы установить, полной или нет, является какая-нибудь совокупность.

Источником возникновения понятия отвлечённого числа является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона. У большинства народов первым таким эталоном являются пальцы («счёт на пальцах»), что с несомненностью подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отвлечённым, не зависящим от качества считаемых объектов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности.

Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т. е. потенциальной возможности его безграничного продолжения. Отчётливое представление о бесконечности натурального ряда отражено в памятниках античной математики (3 в. до н. э.), в трудах Евклида и Архимеда. В «Началах» Евклида устанавливается даже безграничная продолжаемость ряда простых чисел, в книге Архимеда «Псаммит» — принципы для построения названий и обозначений для сколь угодно больших чисел, в частности бо́льших, чем «число песчинок в мире».

С развитием понятия натурального числа как результата счёта предметов в обиход включаются действия над числами. Действия сложения и вычитания возникают сначала как действия над самими совокупностями в форме объединения двух совокупностей в одну и отделения части совокупности. Умножение, по-видимому, возникло в результате счёта равными частями (по два, по три и т.д.), деление — как деление совокупности на равные части. Лишь в многовековом опыте сложилось представление об отвлечённом характере этих действий, о независимости количественного результата действия от природы предметов, составляющих совокупности, о том, что, например, два предмета и три предмета составят пять предметов независимо от природы этих предметов. Тогда стали разрабатывать правила действий, изучать их свойства, создавать методы для решения задач, т. е. начинается развитие науки о числе — арифметики. В первую очередь арифметика развивается как система знаний, имеющая непосредственно прикладную направленность. Но в самом процессе развития арифметики проявляется потребность в изучении свойств чисел. как таковых, в уяснении всё более сложных закономерностей в их взаимосвязях, обусловленных наличием действий. Начинается детализация понятия натурального числа, выделяются классы чётных и нечётных чисел, простых и составных и т.д. Изучение глубоких закономерностей в натуральном ряду чисел продолжается и составляет раздел математики, носящий название теория чисел.

Натуральные числа, кроме основной функции — характеристики количества предметов, несут ещё другую функцию — характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.) тесно переплетается с понятием количественного числа. (один, два и т.д.). В частности, расположение в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребительным с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов).

Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычно и просто, что не возникало потребности в его определении в терминах каких-либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа — с другой, назрела необходимость обоснования понятия количественного натурального числа. Отчётливое определение понятия натурального числа на основе понятия множества (совокупности предметов) было дано в 70-х гг. 19 в. в работах Г. Кантора. Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощными, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется как то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального числа как результата счёта предметов, составляющих данную совокупность. Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному из считаемых предметов и предметов, составляющих «эталонную» совокупность (на ранних ступенях — пальцы рук и зарубки на палочке и т.д., на современном этапе — слова и знаки, обозначающие числа). Определение, данное Кантором, было отправным пунктом для обобщения понятия количественного числа в направлении количественной характеристики бесконечных множеств.

Другое обоснование понятия натурального числа базируется на анализе отношения порядка следования, которое, как оказывается, может быть аксиоматизировано. Построенная на этом принципе система аксиом была сформулирована Дж. Пеано.

Следует отметить, что перенесение понятия порядкового числа на бесконечные совокупности резко расходится с обобщённым понятием количественного числа; это обусловлено тем, что количественно одинаковые (равномощные) множества могут быть упорядочены различными способами.

 

Для измерения величин требовались дробные числа. Дробные числа были известны уже в Древнем Египте и Вавилоне. Египтяне дроби выражали обычно при помощи аликвотных дробей, т.е. дробей с числителем, равным 1. Вавилоняне пользовались шестидесятиричными дробями. Китайцы и индийцы в начале н.э. пользовались обыкновенными дробями и умели выполнять все арифметические действия над ними. Среднеазиатские ученые не позднее 10 в. создали позиционную шестидесятиричную систему счисления. Эта система особенно широко применялась в астрономических вычислениях и таблицах. Следы ее дошли до нас в измерении времени и углов. Десятичные дроби ввел в начале 15 в. и стал широко применять самаркандский математик Каши (аль-Каши). В Европе десятичные дроби стали распространяться после выхода книги «Десятая» (1585), автором которой был С.Стевин. До введения десятичных дробей в практику вычислений целую часть числа европейцы обычно представляли в десятичной системе счисления, а дробную – в шестидесятиричной или в виде обыкновенной дроби.

 

1.2 ВВЕДЕНИЕ И ПРИМЕНЕНИЕ ОТРИЦАТЕЛЬНЫХ ЧИСЕЛ

Дальнейшее расширение понятия числа происходило главным образом в связи с потребностями самой математики. Отрицательные числа впервые появились в Древнем Китае. Индийские математики пришли к отрицательным числам, пытаясь формулировать алгоритм решения квадратных уравнений для всех случаев. Диофант (3 в.) свободно оперирует с отрицательными числами. Они постоянно встречаются в промежуточных вычислениях во многих задачах его «Арифметики». Однако и в 16 и в 17 вв.многие европейские математики не признавали отрицательных чисел, и если такие числа встречались в их вычислениях, то они называли их ложными, невозможными. Положение изменилось, когда в 17 в. было найдено геометрическое истолкование положительным и отрицательным числам, как противоположно направленным отрезкам.

Введение отрицательных чисел было с необходимостью вызвано развитием алгебры как науки, дающей общие способы решения арифметических задач, независимо от их конкретного содержания и исходных числовых данных. Необходимость введения в алгебру отрицательного числа возникает уже при решении задач, сводящихся к линейным уравнениям с одним неизвестным. Возможный отрицательный ответ в задачах такого рода может быть истолкован на примерах простейших направленных величин (таких, как противоположно направленные отрезки, передвижение в направлении, противоположном выбранному, имущество — долг, и т.д.). В задачах же, приводящихся к многократному применению действий сложения и вычитания, для решения без помощи отрицательного числа необходимо рассмотрение очень многих случаев; это может быть настолько обременительным, что теряется преимущество алгебраического решения задачи перед арифметическим. Таким образом, широкое использование алгебраических методов для решения задач весьма затруднительно без пользования отрицательного числа. В Индии ещё в 6—11 вв. отрицательные числа систематически применялись при решении задач и истолковывались в основном так же, как это делается в настоящее время.

В европейской науке отрицательные числа окончательно вошли в употребление лишь со времени Р. Декарта, давшего геометрическое истолкование отрицательного числа как направленных отрезков. Создание Декартом аналитической геометрии, позволившее рассматривать корни уравнения как координаты точек пересечения некоторой кривой с осью абсцисс, окончательно стёрло принципиальное различие между положительными и отрицательными корнями уравнения, их истолкование оказалось по существу одинаковым.

 

1.3. РАЗВИТИЕ ПОНЯТИЯ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА

Числа целые, дробные (положительные и отрицательные) и нуль получили общее название рациональных чисел. Совокупность рациональных чисел обладает свойством замкнутости по отношению к четырём арифметическим действиям. Это значит, что сумма, разность, произведение и частное (кроме частного при делении на нуль, которое не имеет смысла) любых двух рациональных чисел является снова рациональным числом. Совокупность рациональных чисел упорядочена в отношении понятий «больше» и «меньше». Далее, совокупность рациональных чисел обладает свойством плотности: между любыми двумя различными рациональными числами находится бесконечно много рациональных чисел. Это даёт возможность при помощи рациональных чисел осуществлять измерение (например, длины отрезка в выбранной единице масштаба) с любой степенью точности. Таким образом, совокупность рациональных чисел оказывается достаточной для удовлетворения многих практических потребностей. Формальное обоснование понятий дробного и отрицательного числа было осуществлено в 19 в. и не представило, в отличие от обоснования натурального числа, принципиальных затруднений.

Совокупность рациональных чисел оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Здесь оказалось необходимым новое расширение понятия числа, заключающееся в переходе от множества рациональных чисел к множеству действительных (вещественных) чисел.

Веще́ственное, или действи́тельное число — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений.

Если натуральные числа возникли в процессе счета, рациональные — из потребности оперировать частями целого, то вещественные числа предназначены для измерения непрерывных величин. Таким образом, расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое помимо чисел рациональных включает также другие элементы, называемые иррациональными числами.

Наглядно понятие вещественного числа можно представить себе при помощи числовой прямой. Если на прямой выбрать направление, начальную точку и единицу длины для измерения отрезков, то каждому вещественному числу можно поставить в соответствие определённую точку на этой прямой, и обратно, каждая точка будет представлять некоторое, и притом только одно, вещественное число. Вследствие этого соответствия термин числовая прямая обычно употребляется в качестве синонима множества вещественных чисел.

Понятие вещественного числа прошло долгий путь становления. Ещё в Древней Греции в школе Пифагора, которая в основу всего ставила целые числа и их отношения, было открыто существование несоизмеримых величин (несоизмеримость стороны и диагонали квадрата), то есть в современной терминологии — чисел, не являющихся рациональными. Вслед за этим Евдоксом Книдским была предпринята попытка построить общую теорию числа, включавшую несоизмеримые величины. После этого, на протяжении более двух тысяч лет, никто не ощущал необходимости в точном определении понятия вещественного числа, несмотря на постепенное расширение этого поняти. Лишь во второй половине XIX века, когда развитие математического анализа потребовало перестройки его основ на новом, более высоком уровне строгости, в работах К. Вейерштрасса, Р. Дедекинда, Г. Кантора, Э. Гейне, Ш. Мере была создана строгая теория вещественных чисел.

С точки зрения современной математики, множество вещественных чисел — суть, непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле.

Первая развитая числовая система, построенная в Древней Греции, включала только натуральные числа и их отношения. Однако вскоре выяснилось, что для целей геометрии и астрономии этого недостаточно: например, отношение длины диагонали квадрата к длине его стороны не может быть представлено ни натуральным, ни рациональным числом.

Для выхода из положения Евдокс Книдский ввёл, в дополнение к числам, более широкое понятие геометрической величины, то есть длины отрезка, площади или объёма. Теория Евдокса дошла до нас в изложении Евклида («Начала», книга V). По существу, теория Евдокса — это геометрическая модель вещественных чисел. С современной точки зрения, число при таком подходе есть отношение двух однородных величин — например, исследуемой и единичного эталона. Следует, однако, подчеркнуть, что Евдокс остался верен прежней традиции — он не рассматривал такое отношение как число; из-за этого в «Началах» многие теоремы о свойствах чисел затем заново доказываются для величин. Классическая теория Дедекинда для построения вещественных чисел по своим принципам чрезвычайно похожа на изложение Евдокса. Однако модель Евдокса неполна во многих отношениях — например, она не содержит аксиомы непрерывности, нет общей теории арифметических операций для величин или их отношений и др.

Ситуация начала меняться в первые века н. э. Уже Диофант Александрийский, вопреки прежним традициям, рассматривает дроби так же, как и натуральные числа, а в IV книге своей «Арифметики» даже пишет об одном результате: «Число оказывается не рациональным». После гибели античной науки на передний план выдвинулись индийские и исламские математики, для которых любой результат измерения или вычисления считался числом. Эти взгляды постепенно взяли верх и в средневековой Европе, где поначалу разделяли рациональные и иррациональные (буквально: неразумные) числа (их называли также мнимыми, абсурдными, глухими и т. п.).

Спустя столетие Ньютон в своей «Универсальной арифметике» (1707) даёт классическое определение (вещественного) числа как отношения результата измерения к единичному эталону: «Под числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой за единицу».

Долгое время это прикладное определение считалось достаточным, так что практически важные свойства вещественных чисел и функций не доказывались, а считались интуитивно очевидными

Первую попытку заполнить пробел в основаниях математики сделал Бернард Больцано в своей статье «Чисто аналитическое доказательство теоремы, что между любыми двумя значениями, дающими результаты противоположного знака, лежит по меньшей мере один действительный корень уравнения» (1817). В этой работе ещё нет целостной системы вещественных чисел, но уже приводится современное определение непрерывности и показывается, что на этой основе теорема, упомянутая в заглавии, может быть строго доказана. В более поздней работе Больцано даёт набросок общей теории вещественных чисел, по идеям близкой к канторовской теории множеств, но эта его работа осталась неопубликованной при жизни автора и увидела свет только в 1851 году. Взгляды Больцано значительно опередили своё время и не привлекли внимания математической общественности.

Современная теория вещественных чисел была построена во второй половине XIX века, в первую очередь трудами Вейерштрасса, Дедекинда и Кантора. Они предложили различные, но эквивалентные подходы к теории этой важнейшей математической структуры и окончательно отделили это понятие от геометрии и механики.

При конструктивном определении понятия вещественного числа, на основе известных математических объектов (например, множества рациональных чисел), которые принимают заданными, строят новые объекты, которые, в определённом смысле, отражают наше интуитивное понимание о понятии вещественного числа. Существенным отличием между вещественными числами и этими построенными объектами является то, что первые, в отличие от вторых, понимаются нами лишь интуитивно и пока не являются строго определённым математическим понятием.

Эти объекты и объявляют вещественными числами. Для них вводят основные арифметические операции, определяют отношение порядка и доказывают их свойства.

Исторически первыми строгими определениями вещественного числа были именно конструктивные определения. В 1872 году были опубликованы одновременно три работы: теория фундаментальных последовательностей Кантора, теория Вейерштрасса (в современном варианте — теория бесконечных десятичных дробей) и теория сечений в области рациональных чисел Дедекинда.

 

1.4. КОМПЛЕКСНЫЕ ЧИСЛА

Заключительный этап в развитии понятия числа — введение комплексных чисел. Источником возникновения понятия комплексного числа явилось развитие алгебры. По-видимому, впервые идея комплексного числа возникла у итальянских математиков 16 в. (Дж. Кардано, Р. Бомбелли) в связи с открытием алгебраического решения уравнений третьей и четвёртой степеней. Известно, что уже решение квадратного уравнения иногда приводит к действию извлечения квадратного корня из отрицательного числа, невыполнимому в области действительного числа. Но это происходит только в том случае, если уравнение не имеет действительных корней. Практическая задача, приводящаяся к решению такого квадратного уравнения, оказывается не имеющей решения. С открытием алгебраического решения уравнений третьей степени обнаружилось следующее обстоятельство. Как раз в том случае, когда все три корня уравнения являются действительными числами, по ходу вычисления оказывается необходимо выполнить действие извлечения квадратного корня из отрицательных чисел. Возникающая при этом «мнимость» исчезает только по выполнении всех последующих действий. Это обстоятельство явилось первым стимулом к рассмотрению комплексных чисел. Однако комплексные числа и действия над ними с трудом прививались в деятельности математиков. Остатки недоверия к закономерности пользования ими отражаются в сохранившемся до наших дней термине «мнимое» число. Это недоверие рассеялось лишь после установления в конце 18 в. геометрического истолкования комплексных чисел в виде точек на плоскости и установления несомненной пользы от введения комплексных чисел в теории алгебраических уравнений, особенно после знаменитых работ К. Гаусса. Ещё до Гаусса, в работах Л. Эйлера, комплексные числа начинают играть существенную роль не только в алгебре, но и в математическом анализе. Эта роль стала исключительно большой в 19 веке в связи с развитием теории функций комплексного переменного.

Совокупность всех комплексных чисел обладает так же, как совокупность действительных чисел и совокупность рациональных чисел, свойством замкнутости по отношению к действиям сложения, вычитания, умножения и деления. Более того, совокупность всех комплексных чисел обладает свойством алгебраической замкнутости, заключающейся в том, что каждое алгебраическое уравнение с комплексными коэффициентами имеет корни снова в области всех комплексных чисел. Совокупность всех действительных чисел (и тем более рациональных) свойством алгебраической замкнутости не обладает. Как установлено Вейерштрассом, совокупность всех комплексных чисел не может быть далее расширена за счёт присоединения новых чисел так, чтобы в расширенной совокупности сохранились все законы действий, имеющие место в совокупности комплексных чисел.

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)