АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задача Д6

Читайте также:
  1. VI. Общая задача чистого разума
  2. Вопрос 2 Проверка и оценка в задачах со случайными процессами на примере решения задач экозащиты, безопасности и риска.
  3. Глава 10 Системный подход к задачам управления. Управленческие решения
  4. ГЛАВА 2.1. ЗАЩИТА ИННОВАЦИЙ КАК ЗАДАЧА УПРАВЛЕНИЯ ИННОВАЦИОННЫМИ ПРОЦЕССАМИ
  5. Глава 4. Математические основы оптимального управления в экономических задачах массового обслуживания
  6. Двойственная задача линейного программирования.
  7. Доклад о задачах власти Советов
  8. Доклад об экономическом положении рабочих Петрограда и задачах рабочего класса на заседании рабочей секции Петроградского совета рабочих и солдатских депутатов
  9. Задача 1
  10. Задача 1
  11. Задача 1
  12. ЗАДАЧА 1

(тема: “Принцип Даламбера для механической системы”)

 

Вертикальный вал (рис. Д6.0-Д6.9, табл. Д6), вращается с постоянной угловой скоростью с-1. Вал имеет две опоры: подпятник в точке А и цилиндрический подшипник в точке, указанной в табл. Д6 (). К валу жестко прикреплены невесомый стержень 1 длиной м с точечной массой кг на конце и однородный стержень 2 длиной м, имеющий массу кг; оба стержня лежат в одной плоскости. Точки крепления стержней к валу и углы α и β указаны в таблице. Пренебрегая весом вала, определить реакции подпятника и подшипника. При окончательных подсчетах принять м.

 

Перед выполнением задания прочтите по учебнику тему: «Принцип Даламбера». Ответьте на вопросы:

1. Сформулируйте принцип Даламбера для точки.

2. Как определяется модуль и направление силы инерции для точки? В каких случаях сила инерции равна нулю?

3. Сформулируйте принцип Даламбера для системы.

4. Чему равны главный вектор и главный момент сил инерции системы?

5. Запишите уравнения равновесия произвольной системы сил и плоской системы сил в координатной форме (вспомнив соответствующие уравнения статики).

Принцип Даламбера для точки и системы (краткие сведения из теории) Принцип Даламбера для точки.Рассмотрим дифференциальное уравнение движения точки в инерциальной системе отсчета в векторной форме: , (1) где – векторная сумма всех сил, действующих на точку (активных и реакций связей). Перенесем вектор в правую часть уравнения (1): ; обозначим ; тогда получим уравнение , (2) где ; (3) эта величина называется силой инерции точки. Уравнение (2) по форме соответствует уравнению равновесия сил в векторной форме. В этом и состоит принцип Даламбера для точки: если к приложенным к точке силам добавить силу инерции (3), то полученная система сил (активных, реакций связей и сил инерции) будет уравновешенной и задачу динамики можно решать, применив методы статики. Такой метод решения задач динамики называется методом кинетостатики.

 

Сила инерции точки (см. (3)). Модуль силы инерции точки равен ; направлена сила инерции в сторону, противоположную абсолютному ускорению точки . Поэтому для построения на рисунке следует сначала построить вектор (или его составляющие, например, и ), и затем построить в сторону, противоположную вектору (или и в стороны, противоположные и , соответственно). Принцип Даламбера для системы. Применим описанный выше принцип Даламбера к каждой точке системы. К силам, действующим на каждую точку (внешним и внутренним), добавляется сила инерции (3). Получаем систему сил (внешних, внутренних и сил инерции) для всех точек системы. Принцип Даламбера для системы формулируется следующим образом: если к внешним силам (активным и реакциям связей), действующим на каждую точку системы, добавить силу инерции (3), то полученная система сил будет уравновешенной и для нее справедливы уравнения статики. Уравнения равновесия сил (внешних (активных и реакций связей) и сил инерции) в векторной форме: ; , где ,– главный вектор и главный момент относительно произвольного центра O внешних сил (активных и реакций связей); , – главный вектор и главный момент относительно произвольного центра O сил инерции. В алгебраической (координатной) форме уравнения равновесия записываются различным образом, в зависимости от типа получившейся системы сил (произвольная система сил, плоская система сил и т. д., см. раздел “Статика”). Главный вектор сил инерции не зависит от центра приведения и может быть вычислен заранее: , где M – масса тела (системы), – абсолютное ускорение центра масс тела (системы). Главный вектор не обязательно приложен в центре масс (так как центр приведения – произвольная точка). Главный момент сил инерции относительно центра приведения O: . Главный момент зависит от центра приведения O и заранее может быть вычислен только в некоторых частных случаях (для некоторых видов движения тела и различных центров приведения).

 

Рис. Д6.9
Рис. Д6.8
Рис. Д6.7

 

Таблица Д6

Номер условия Подшипник в точке Крепление a, град. b, град.
стержня 1 в точке стержня 2 в точке
  В D K    
  D B E    
  E D B    
  K D E    
  B E D    
  D K B    
  E B K    
  K E B    
  D E K    
  E K D    

Указания. Задача Д6 – на применение к изучению движения системы принципа Даламбера. При решении задачи учесть, что система сил инерции точек стержня 2 представляет собой систему параллельных сил, направленных в одну сторону и, следовательно, имеет равнодействующую . Модуль равнодействующей , где ускорение центра масс С стержня. Линия действия силы не проходит через точку С, так как силы инерции образуют линейно распределенную нагрузку(см. пример Д6).

Рис. Д6

Пример Д6. С невесомым валом , вращающимся с постоянной угловой скоростью , жестко скреплен однородный стержень длиной и массой , имеющий на конце груз массой (рис. Д6). Дано: м, м, , м, кг, кг, с-1. Определить: реакции подпятника и подшипника .

Решение. Для определения искомых реакций рассмотрим движение механической системы, состоящейиз вала , стержня и груза, и применим принцип Даламбера. Проведем неподвижныеоси , лежащие в данный момент времени в плоскости, образуемой валом и стержнем, и изобразим действующие на систему внешние силы: силы тяжести , составляющие реакции подпятника и реакцию подшипника (XA, YA, XB надо определить).

Согласно принципу Даламбера, присоединим к этим силам силы инерции точек стержня и груза, считая груз материальной точкой. Так как вал вращается равномерно (), то точки стержня имеют только нормальные ускорения направленные к оси вращения; численно , где – расстояние от точки от оси. Тогда силы инерции будут направлены от оси вращения; численно , где mk – масса точки. Поскольку пропорциональны , то эпюра этих параллельных сил образует треугольник и их можно заменить равнодействующей , линия действия которой проходит через центр тяжести этого треугольника (точку пересечения медиан), т.е. на расстоянии H 1 от вершины О, где , (см. рис. Д6).

Известно, что равнодействующая любой системы сил равна ее главному вектору; численно главный вектор сил инерции стержня , где – ускорение центра масс стержня. Так как стержень вращается с постоянной угловой скоростью, то ускорение центра масс стержня имеет только нормальную составляющую: . В результате получим

Аналогично для силы инерции груза найдем, что она направлена от оси вращения; численно

Так как все действующие силы и силы инерции лежат в плоскости Aху, то и реакции подпятника А и подшипника В тоже лежат в этой плоскости, что было учтено приих изображении на рисунке.

По принципу Даламбера, приложенные внешние силы и силы инерции образуют уравновешенную систему сил. Составляя для этой плоской системы сил три уравнения равновесия, получим:

(1)

(2)

(3)

Подставив сюда числовые значения всех заданных и вычисленных величин и решив эту систему уравнений, найдем искомые реакции (в своей задаче решение уравнений равновесия должно быть выполнено подробно).

 

Ответ: XA = -11,8 Н, YA = 49,1 Н, XB = -19,7 Н.

Знаки указывают, что силы и направлены противоположно показанным на рис. Д6.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)