АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных

Читайте также:
  1. А. Механические методы
  2. Биомеханические аспекты переломов надколенника
  3. В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.
  4. В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.
  5. Влияние легирующих элементов на структуру и механические свойства сталей
  6. Возникновение ударной волны
  7. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  8. Волны де Бройля
  9. ВОЛНЫ ДЕ БРОЙЛЯ
  10. Волны де Бройля
  11. Волны международной миграции рабочей силы и их основные особенности
  12. Волны политической модернизации

Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига. Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна.

В жидкостях и газах упругая деформация сдвига не возникает. Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появляется. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ.

Смещение y (x, t) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX, вдоль которой распространяется волна, и от времени t по закону:

 

 

 

где – так называемое волновое число, ω = 2π f – круговая частота.

На рис. 2.6.4 изображены «моментальные фотографии» поперечной волны в два момента времени: t и t + Δ t. За время Δ t волна переместилась вдоль оси OX на расстояние υΔ t. Волны, все точки которых перемещаются с одной и той же скоростью, принято называть бегущими (в отличие от стоячих волн, см. далее).

Рисунок 2.6.4. «Моментальные фотографии» бегущей синусоидальной волны в момент времени t и t + Δ t.

Длиной волны λ называют расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за период Т, следовательно, λ = υ T, где υ – скорость распространения волны.

Для любой выбранной точки на графике волнового процесса (например, для точки A на рис. 2.6.4) выражение ω tkx не изменяется по величине. С течением времени t изменяется и координата x этой точки. Через промежуток времени Δ t точка A переместится по оси OX на некоторое расстояние Δ x = υΔ t. Следовательно:

  ω tkx = ω(t + Δ t) – k (x + Δ x) = const или ωΔ t = k Δ x.  

Отсюда следует:

   

Таким образом, бегущая синусоидальная волна обладает двойной периодичностью – во времени и пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны λ. Волновое число является пространственным аналогом круговой частоты

Обратим внимание на то, что уравнение

 
y (x, t) = A cos (ω t + kx)

 

 

описывает синусоидальную волну, распространяющуюся в направлении, противоположном направлению оси OX, со скоростью

В бегущей синусоидальной волне каждая частица среды совершает гармонические колебания с некоторой частотой ω. Поэтому, как и в случае простого колебательного процесса, средняя потенциальная энергия, запасенная в некотором объеме среды, равна средней кинетической энергии в том же объеме.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)