АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Digital vs. informational physics

Читайте также:
  1. Astrophysics
  2. Chapter VII - Try metaphysics
  3. Digital Rights Management
  4. PHYSICAL BASIS OF NUCLEAR PHYSICS
  5. THE UNIFICATION OF PHYSICS
  6. БРИФ НА ОКАЗАНИЕ DIGITAL - УСЛУГ
  7. Видеопроекторы технологии D-ILA (Digital-Image Light Amplifier).

Not every informational approach to physics (or ontology) is necessarily digital. According to Luciano Floridi,[16] "informational structural realism" is a variant of structural realism that supports an ontological commitment to a world consisting of the totality of informational objects dynamically interacting with each other. Such informational objects are to be understood as constraining affordances.

Digital ontology and pancomputationalism are also independent positions. In particular, John Wheeler advocated the former but was silent about the latter; see the quote in the preceding section.

On the other hand, pancomputationalists like Lloyd (2006), who models the universe as a quantum computer, can still maintain an analogue or hybrid ontology; and informational ontologists like Sayre and Floridi embrace neither a digital ontology nor a pancomputationalist position.[17]

Computational foundations

Turing machines

Theoretical computer science is founded on the Turing machine, an imaginary computing machine first described by Alan Turing in 1936. While mechanically simple, the Church-Turing thesis implies that a Turing machine can solve any "reasonable" problem. (In theoretical computer science, a problem is considered "solvable" if it can be solved in principle, namely in finite time, which is not necessarily a finite time that is of any value to humans.) A Turing machine therefore sets the practical "upper bound" on computational power, apart from the possibilities afforded by hypothetical hypercomputers.

Wolfram's principle of computational equivalence powerfully motivates the digital approach. This principle, if correct, means that everything can be computed by one essentially simple machine, the realization of a cellular automaton. This is one way of fulfilling a traditional goal of physics: finding simple laws and mechanisms for all of nature.

Digital physics is falsifiable in that a less powerful class of computers cannot simulate a more powerful class. Therefore, if our universe is a gigantic simulation, that simulation is being run on a computer at least as powerful as a Turing machine. If humans succeed in building a hypercomputer, then a Turing machine cannot have the power required to simulate the universe. Hence, progress in quantum computation may have implications for all of physical theory, including cosmology.


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)