АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

RAZDEL NAMBA PROTRI

Читайте также:
  1. ГЛАВА ТРЕТЬЯ
  2. Металлы металлическая связь
  3. Методика обчислення розміру грошового відшкодування моральної шкоди, пропонована Є.С.Черноногом
  4. Особенности информационного сопровождения некоммерческих организаций
  5. Произведения Р. Яхина
  6. Руководитель практики от филиала
  7. Скорректированная прибыль от основной деятельности
  8. СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.

Сплавы состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплав легирующих и модифицирующих элементов, а также из неудалённых примесей (природных, технологических и случайных).

Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.

Виды сплавов

По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые — прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являютсякарбиды вольфрама или титана.

По способу получения заготовки (изделия) различают литейные (например, чугуны, силумины), деформируемые (например, стали) и порошковые сплавы.

В твердом агрегатном состоянии сплав может быть гомогенным (однородным, однофазным — состоит из кристаллитов одного типа) и гетерогенным (неоднородным, многофазным).Твёрдый раствор является основой сплава (матричная фаза). Фазовый состав гетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений (в том числе карбиды, нитриды, интерметаллиды) и кристаллитыпростых веществ.

Свойства сплавов

Свойства металлов и сплавов полностью определяются их структурой (кристаллической структурой фаз и микроструктурой). Макроскопические свойства сплавов определяются микроструктурой и всегда отличаются от свойств их фаз, которые зависят только от кристаллической структуры. Макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения фаз в металлической матрице. Сплавы проявляют металлические свойства, например: электропроводность и теплопроводность, отражательную способность (металлический блеск) и пластичность. Важнейшей характеристикой сплавов является свариваемость.

Смесь — химическое вещество, в состав которого входит не менее двух составляющих веществ (компонентов смеси)[1]. Однородную[2] смесь называют раствором(газовым, жидким или твёрдым), а неоднородную[3]механической смесью [4][5]. Любую смесь можно разделить на компоненты физическими методами[6]; изменения состава компонентов смеси при этом не происходит[7].

Составляющие вещества, индивидуальные вещества, чистые вещества и смеси

Классификация химических веществ по их делимости на составные части

Традиционная эмпирическая классификация химических веществ основана на их делимости на составные части[8][9][10][11] и не использует представлений атомно-молекулярной теории. В отечественной литературе принято делить химические вещества на индивидуальные (чистые) вещества (простые и соединения) и их смеси[12][13][14][15]. На сегодняшний день стандартизированное определение индивидуального вещества отсутствует[15], поэтому в физической химии в качестве его синонимаиспользуют термин составляющее вещество[16], понимая под ним любое вещество, которое может быть выделено из системы и существовать вне её[17][18][19][20] (иногда говорят не о составляющих веществах и независимых составляющих веществах —компонентах, — а о компонентах и независимых компонентах [21][22]). Отказ от использования терминов «чистое вещество» и «индивидуальное вещество» исключает произвол, связанный с привязкой этих понятий к степени чистоты вещества и требованиям постоянства его состава и свойств.

Классификация смесей

В зависимости от фазового состава различают[7][15]:

· гомогенную смесь, представляющую собой однородную систему, химический состави физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела). Составные части гомогенной смеси нельзя отделить друг от друга механическими методами;

· гетерогенную смесь, состоящую из однородных частей (фаз), разделённых поверхностью раздела. Фазы могут отличаться друг от друга по составу и свойствам. Составные части гетерогенной смеси можно отделить друг от друга механическими методами. К гетерогенным смесям относятся, например, композиты.

Гомогенные смеси делят по агрегатному состоянию на три группы[15]:

· газовые смеси (газовые растворы), например, атмосферный воздух;

· растворы (жидкие растворы), например, раствор сахара в воде, природная вода, нефть и нефтепродукты;

· твёрдые растворы, например, природный минерал электрум и входящий в состав углеродистых сталей аустенит.

(13)Твёрдые растворы — фазы переменного состава, в которых атомы различных элементов расположены в общей кристаллической решётке.

Могут быть неупорядоченными (с хаотическим расположением атомов), частично или полностью упорядоченными. Экспериментально упорядоченность определяют, главным образом, рентгеновским структурным анализом.

Способность образовывать твёрдые растворы свойственна всем кристаллическим твёрдым телам. В большинстве случаев она ограничена узкими пределами концентраций, но известны системы с непрерывным рядом твёрдых растворов (например, Cu—Au, Ti—Zr, GaAs—GaP). По существу, все кристаллические вещества, считающиеся чистыми, представляют собой твёрдые растворы с очень малым содержанием примесей.

Различают три вида твёрдых растворов:

· твёрдые растворы замещения;

· твёрдые растворы внедрения;

· твёрдые растворы вычитания.

Согласно полуэмпирическим правилам Юм-Розери, непрерывный ряд твёрдых растворов замещения в металлических системах образуются лишь теми элементами, которые, во-первых, имеют близкие по размерам атомные радиусы (отличающиеся не более чем на 15 %) и, во-вторых, находятся не слишком далеко друг от друга вэлектрохимическом ряду напряжений. При этом элементы должны иметь один и тот же тип кристаллической решётки. В твёрдых растворах на основе полупроводников и диэлектриков, благодаря более «рыхлым» кристаллическим решёткам образование твёрдых растворов замещения возможно и при большем различии атомных радиусов.

Если атомы компонентов существенно различаются по размерам или электронной структуре, возможно внедрение атомов одного элемента в междоузлия решётки, образованной другим элементом. Подобные твёрдые растворы часто образуются при растворении неметаллов (B, H2, O2, N2, C) в металлах.

Твёрдые растворы вычитания, возникающие за счёт появления в кристаллической решётке вакантных узлов, образуются при растворении одного из компонентов в химическом соединении и характерны для нестехиометрических соединений.

Природные минералы часто представляют собой твёрдые растворы (см. Изоморфизм в кристаллах). Образование твёрдых растворов при легировании элементов и соединений имеет большое значение в производстве сплавов, полупроводников, керамики, ферритов.

Твёрдые растворы — основа всех важнейших конструкционных и нержавеющих сталей, бронз, латуней, алюминиевых и магниевых сплавов высокой прочности. Свойства твёрдых растворов регулируют их составом, термической или термомеханической обработкой. Легированные полупроводники и многие сегнетоэлектрики, являющиеся основой современной твердотельной электроники, также являются твёрдыми растворами.

При распаде твёрдых растворов сплавы приобретают новые свойства. Наиболее ценными качествами обладают сплавы с очень тонкой неоднородностью — так называемые дисперсионно-твердеющие, или стареющие твёрдые растворы. Дисперсионное твердение может наблюдаться и при распаде твёрдых растворов на основе соединений, например, нестехиометрических шпинелей.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)