АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Электромагнитный ускоритель

Читайте также:
  1. ЭЛЕКТРОДВИЖУЩАЯ СИЛА И ЭЛЕКТРОМАГНИТНЫЙ МОМЕНТ МАШИНЫ ПОСТОЯННОГО ТОКА
  2. Электромагнитный расцепитель АВ

Однажды я узнал, что если к генератору подключить источник питания, то он будет являться электро-двигателем. Меня это заинтересовало. И так как они основаны на «Электромагнитной индукции», то из простейшего генератора индуцированного тока можно сделать электромагнитный ускоритель.

 

Электромагнитный ускоритель состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд. При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. После чего, магнитное поле действующие долю секунды прекращается и снаряд летит дальше по инерции.


Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала. Стоит заметить что возможны разные алгоритмы работы ускоряющих катушек.



Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электролитические конденсаторы с высоким рабочим напряжением.


Электромагнитный ускоритель обладает преимуществами. Это неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела (если скорость достаточно обтекаемого снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надежность и теоретически износостойкость, а также возможность работы в любых условиях, в том числе в космическом пространстве.

Однако, несмотря на кажущуюся простоту электромагнитного ускорителя, использование сопряжено с серьёзными проблемами.

Первая и основная проблема — низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 27 %.

Вторая проблема — большой расход энергии (из-за низкого КПД).

Третья проблема (следует из первых двух) — большой вес и габариты установки при её низкой эффективности.

Четвёртая проблема — достаточно длительное время накопительной перезарядки конденсаторов. Можно, теоретически, увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что приносит дополнительные проблемы, и серьёзно влияет на область применения установки.

Пятая проблема — с увеличением скорости снаряда время действия магнитного поля, за время пролёта снарядом соленоида, существенно сокращается, что приводит к необходимости не только заблаговременно включать каждую следующую катушку многоступенчатой системы, но и увеличивать мощность её поля пропорционально сокращению этого времени.
В условиях водной среды применение пушки без защитного кожуха также серьёзно ограничено — дистанционной индукции тока достаточно, чтобы раствор солей диссоциировал на кожухе с образованием агрессивных (растворяющих) сред, что требует дополнительного магнитного экранирования.

Теоретически, перспективы возможны лишь в будущем, если будут созданы компактные и мощные источники электрического тока и высокотемпературные сверхпроводники (200—300К). Однако, установка, подобная пушке Гаусса, может использоваться в космическом пространстве, так как в условиях вакуума и невесомости многие недостатки подобных установок нивелируются. В частности, в военных программах СССР и США рассматривалась возможность использования установок, подобных пушке Гаусса, на орбитальных спутниках для поражения других космических аппаратов (снарядами с большим количеством мелких поражающих деталей), или объектов на земной поверхности, или для защиты станции от метеоритов.

Двигатель электромагнитной индукции. Электромагнитный запускатор.


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)