АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Хокинг, С. 8 страница

Читайте также:
  1. DER JAMMERWOCH 1 страница
  2. DER JAMMERWOCH 10 страница
  3. DER JAMMERWOCH 2 страница
  4. DER JAMMERWOCH 3 страница
  5. DER JAMMERWOCH 4 страница
  6. DER JAMMERWOCH 5 страница
  7. DER JAMMERWOCH 6 страница
  8. DER JAMMERWOCH 7 страница
  9. DER JAMMERWOCH 8 страница
  10. DER JAMMERWOCH 9 страница
  11. II. Semasiology 1 страница
  12. II. Semasiology 2 страница

Рис. 34. Фейнмановская диаграмма виртуальной пары частица-античастица.

Применительно к электрону принцип неопределенности предполагает, что в пустом пространстве виртуальные пары частица—античастица возникают, а затем аннигилируют.

 

Проблема в том, что виртуальные частицы обладают энергией. И поскольку существует бесконечное число пар виртуальных частиц, они фактически должны были бы иметь бесконечную энергию, а значит — в соответствии с известным уравнением Эйнштейна Е = тс2, — и бесконечную массу. Согласно общей теории относительности это привело бы к такому гравитационному искривлению пространства, что Вселенная сжалась бы до бесконечно малых размеров. Однако ничего подобного явно не происходит! Аналогичные, по-видимому, абсурдные, бесконечности возникают и в других частных теориях — сильного, слабого и электромагнитного взаимодействий, — но для них существует так называемая процедура перенормировки, которая позволяет избавляться от бесконечностей. Благодаря ей, мы и смогли создать квантовые теории этих взаимодействий.

Перенормировка вводит новые бесконечности, которые математически сокращаются с бесконечностями, возникающими в теории. Однако это сокращение не обязательно должно быть полным. Можно выбрать новые бесконечности так, чтобы при сокращении получался небольшой остаток. Эти остатки называются перенормированными величинами.

Хотя подобная операция довольно сомнительна с точки зрения математики, она, кажется, все-таки работает. Ее применение в теориях сильного, слабого и электромагнитного взаимодействий дает предсказания, которые невероятно точно согласуются с наблюдениями. Тем не менее, использование перенормировки для поисков полной физической теории имеет серьезный недостаток, поскольку означает, что массы частиц и силы взаимодействий нельзя предсказать теоретически, а следует подгонять под результаты экспериментов. Попытки применить перенормировку для устранения квантовых бесконечностей из общей теории относительности пока позволили привести к желаемому виду только две величины — силу тяготения и космологическую постоянную, которую Эйнштейн ввел в свои уравнения, будучи уверен, что Вселенная не расширяется (см. гл. 7). Как выясняется, их корректировки недостаточно для избавления от всех бесконечностей. Поэтому квантовая теория гравитации продолжает предсказывать, что некоторые величины, например искривление пространства-времени, бесконечны, тогда как на практике они вполне поддаются измерению и оказываются конечными! Ученые давно подозревали, что данное обстоятельство станет преградой на пути включения принципа неопределенности в общую теорию относительности, но в 1972 г. их опасения были наконец подкреплены детальными вычислениями. Четырьмя годами позже было предложено возможное решение проблемы, названное «супергравитацией». К несчастью, выяснение того, оставляет ли супергравитация место для каких-либо бесконечностей, требовало настолько сложных и трудоемких вычислений, что никто за них не взялся. По предварительным оценкам, даже компьютеру на это потребовались бы годы, и очень высока вероятность того, что в подсчеты вкралась бы по крайней мере одна ошибка, а вероятно, и больше. Так что удостовериться в правильности результата можно было бы только в том случае, если бы кто-то еще повторил вычисления и получил тот же самый итог, что представлялось крайне маловероятным!

Несмотря на эти проблемы и на то, что частицы, фигурирующие в теориях супергравитации, похоже, никак не соотносились с известными науке частицами, большинство ученых полагало, что супергравитация поддается перенормировке и, вероятно, является решением проблемы объединения физики. Она казалась наилучшим способом объединить гравитацию с остальными взаимодействиями. Но вот, в 1984 г., произошел знаменательный поворот в сторону семейства теорий, называемых теориями струн.

До появления теорий струн считалось, что каждая из фундаментальных элементарных частиц может находиться в определенной точке пространства. В теориях струн фундаментальные объекты не точечные частицы, а протяженные. Они имеют длину, но никаких других измерений, подобно струне с бесконечно малым поперечным сечением. Эти объекты могут иметь концы (так называемые открытые струны) или сворачиваться в кольцо (замкнутые струны). Частица в каждый момент времени занимает одну точку пространства. Струна же в каждый момент времени занимает в пространстве линию. Две струны могут слиться в одну; в случае открытых струн просто соединяются их концы, а в случае закрытых — это напоминает соединение штанин в одной паре брюк3. Точно так же одна струна может разделиться на две.

Если элементарные объекты во Вселенной представляют собой струны, что же такое тогда точечные частицы, которые мы, похоже, наблюдаем в экспериментах? В теориях струн то, что ранее считалось различными точечными частицами, рассматривается как различные виды волн, распространяющихся по струнам, вроде тех, что пробегают по вибрирующей бечевке воздушного змея. Сами же струны вместе со своими колебаниями настолько малы, что даже лучшие наши технологии не способны выявить их форму, потому-то во всех наших экспериментах они и ведут себя как крошечные, бесформенные точки. Представьте себе, что вы рассматриваете крошечную пылинку: вблизи или под лупой, вы можете увидеть, что она имеет неправильную или даже струноподобную форму, но вот на расстоянии пылинка выглядит лишенной характерных черт точкой.

В теории струн испускание или поглощение одной частицы другой соответствует делению или слиянию струн. Например, в физике элементарных частиц гравитационное воздействие Солнца на Землю объясняется тем, что частицы солнечного вещества испускают гравитоны, частицы—переносчики взаимодействия, а частицы вещества Земли их поглощают4. В теории струн этот процесс представляется Н-образной диаграммой, напоминающей соединение труб (теория струн вообще чем-то напоминает водопроводное дело). Две вертикальные палочки буквы «Н» соответствуют частицам вещества Солнца и Земли, а горизонтальная перекладина — гравитону, который перемещается между ними (рис. 35).

Теория струн имеет любопытную историю. Первоначально она была сформулирована в конце 1960-х гг. в ходе поисков теории сильного взаимодействия. Идея состояла в том, что такие частицы, как протон и нейтрон, можно рассматривать как колебания струны. Сильное взаимодействие между частицами соответствовало бы отрезкам струны, соединяющим другие струны, как в паутине. Чтобы эта теория предсказывала наблюдаемую величину сильного взаимодействия между частицами, струны должны были походить на резиновые жгуты, натянутые с усилием около десяти тонн.

В 1974 г. Жоэль Шерк из Парижа и Джон Шварц из Калифорнийского технологического института опубликовали статью, в которой показали, что теория струн может описать природу гравитационного взаимодействия, но только если натяжение струны составит около тысячи миллионов миллионов миллионов миллионов миллионов миллионов тонн (единица с тридцатью девятью нулями). В обычных масштабах длины теория струн давала те же предсказания, что и общая теория относительности, но на очень маленьких расстояниях — меньше тысячной миллионной миллионной миллионной миллионной миллионной доли сантиметра (сантиметра, деленного на единицу с тридцатью тремя нулями) — их предсказания расходились. Статье не уделили большого внимания, но потому лишь, что в тот период большинство ученых отказались от истолкования сильного взаимодействия в терминах теории струн в пользу теории кварков и глюонов, которая, казалось, куда более соответствовала наблюдениям. Шерк умер при трагических обстоятельствах (он страдал диабетом и впал в кому, когда вокруг не было никого, кто мог бы ввести ему инсулин). Так что Шварц остался фактически единственным поборником теории струн, причем теперь уже струн с гораздо более высоким предполагаемым натяжением.

В 1984 г. интерес к струнам внезапно возродился, и тому было две причины. С одной стороны, не увенчались особым успехом попытки доказать, что супергравитация не содержит бесконечностей и способна объяснить существование наблюдаемых нами видов элементарных частиц. С другой, увидела свет новая статья Джона Шварца, на сей раз написанная совместно с Майком Грином из Колледжа королевы Марии в Лондоне. Эта работа показывала, что теория струн способна объяснить существование экспериментально наблюдавшихся частиц, которые обладают своего рода врожденной «леворукостью». (Поведение большинства частиц не изменилось бы, если бы экспериментальную установку заменили ее зеркальным отражением; но поведение данных частиц меняется. Как будто они являются левшами или правшами, а не владеют одинаково обеими руками.) Как бы то ни было, большое число ученых вскоре начало работать над теорией струн, и была создана ее новая версия, которая, казалось, могла объяснить существование наблюдаемых нами частиц.

Рис. 35. Диаграммы Фейнмана в теории струн.

В теории струн происхождение дальнодействующих сил связывается скорее с соединением труб, чем с обменом частицами—переносчиками взаимодействий.

 

Теории струн также ведут к бесконечностям, но считается, что в правильной версии теории все они сократятся (хотя это еще неизвестно наверняка). Гораздо серьезнее другая проблема: теории струн совместимы только с пространством-временем, имеющим либо десять, либо двадцать шесть измерений вместо обычных четырех!

Конечно, наличие у пространства-времени дополнительных измерений сделалось общим местом научной фантастики. Действительно, они дают идеальный способ преодоления ограничений, которые общая теория относительности накладывает на сверхсветовые перемещения и путешествия в прошлое (см. гл. 10). Идея заключается в том, чтобы добраться к цели коротким путем через дополнительные измерения. Это можно представить себе следующим образом. Вообразите, что пространство, в котором мы существуем, имеет только два измерения и изогнуто подобно поверхности якорного кольца или бублика5. Если вы находитесь на внутренней стороне поверхности и хотите добраться в диаметрально противоположную точку кольца, вам придется двигаться к цели по кругу на внутренней поверхности кольца. Но если бы вы могли выйти в третье измерение, вам удалось бы покинуть поверхность кольца и срезать путь.

Почему мы не наблюдаем все эти дополнительные измерения, если они действительно существуют? Почему нашему восприятию доступны только три пространственных измерения и одно измерение времени? Вероятный ответ состоит в том, что другие измерения не похожи на те, к которым мы привыкли. Они свернуты до очень небольшого размера, что-то вроде одной миллионной миллионной миллионной миллионной миллионной доли сантиметра (10-30 см). Это так мало, что просто незаметно для нас: мы фиксируем только одно измерение времени и три измерения пространства, в которых пространство-время практически плоское. Чтобы представить себе, как это получается, вообразите поверхность соломинки. Посмотрев на нее с близкого расстояния, вы увидите, что поверхность двумерная. То есть положение точки на соломинке описывается двумя числами — расстоянием, измеренным вдоль соломинки, и расстоянием, измеренным поперек ее длины, по окружности. Но поперечный размер намного меньше продольного. Вот почему издали соломинка выглядит лишенной толщины, одномерной и кажется, что задать положение точки на ней можно одним, продольным измерением. Приверженцы теории струн утверждают, что аналогичным образом обстоит дело и с пространством-временем: в ничтожно малых масштабах оно десятимерное и сильно искривленное, но в больших масштабах ни искривления, ни дополнительных измерений не наблюдается.

Если описанная картина верна, это плохая новость для людей, мечтающих о космических путешествиях: дополнительные измерения, по-видимому, слишком малы, чтобы вместить космический корабль. Однако это описание ставит большой вопрос и перед учеными: почему только некоторые, а не все измерения свернуты в маленький шарик? Предполагается, что в молодой Вселенной все измерения были сильно искривлены. Почему одно временн о е и три пространственных измерения распрямились, а другие остаются тесно свернутыми?

Один из возможных ответов — антропный принцип, который можно сформулировать следующим образом: мы видим Вселенную такой, какая она есть, потому что мы существуем. Имеется две версии антропного принципа — слабая и сильная. Слабый антропный принцип утверждает, что во Вселенной, которая невообразимо велика или даже бесконечна в пространстве и/или времени, условия, необходимые для развития разумной жизни, складываются только в некоторых областях, ограниченных в пространстве и времени. Поэтому разумные существа, населяющие такие области, не должны удивляться тому, что их местопребывание во Вселенной удовлетворяет тем условиям, которые необходимы для жизни. В каком-то смысле они подобны богачу, живущему в фешенебельном районе и не сталкивающемуся с нищетой.

Некоторые теоретики идут намного дальше и предлагают сильную версию принципа. Согласно этой последней существует или много различных вселенных, или много различных областей одной Вселенной, каждая из которых обладает собственной начальной конфигурацией и, возможно, собственным набором физических законов. В большинстве таких вселенных физические условия не способствуют развитию сложных организмов, и лишь немногие вселенные, подобные нашей, стали колыбелью разумных существ, задавшихся вопросом: почему Вселенная такова, какой мы ее видим? Тогда ответ прост: окажись она другой, нас бы здесь не было!6

Немногие возьмутся оспаривать действенность или пользу слабого антропного принципа, но сильный принцип в качестве объяснения наблюдаемого состояния Вселенной может встретить множество возражений. Например, какой смысл может вкладываться в утверждение, что все эти различные вселенные существуют? Если они действительно обособлены друг от друга, тогда происходящее в другой вселенной не может повлечь никаких последствий, которые были бы заметны в нашей собственной Вселенной. Значит, следуя принципу экономии, мы должны исключить их из нашей теории. Если же это лишь различные области одной Вселенной, в каждой из них должны действовать одни и те же физические законы, потому что иначе нельзя было бы непрерывно перемещаться из одной области в другую. В последнем случае единственное различие между областями заключалось бы в их начальных конфигурациях, так что сильный антропный принцип свелся бы к слабому.

Антропный принцип дает один из возможных ответов на вопрос, почему дополнительные измерения теории струн свернуты. Двух пространственных измерений, похоже, недостаточно для развития таких сложных существ, как мы. Например, двумерные животные, обитающие на одномерной Земле, должны были бы перебираться друг через друга, чтобы разойтись. Если бы двумерное существо съело нечто такое, что не смогло бы полностью переваривать, оно должно было бы извергнуть непереваренные остатки наружу тем же путем, каким проглотило, потому что наличие сквозного прохода через тело делило бы такое существо на две отдельные части: наше двумерное существо просто развалилось бы. Точно так же трудно вообразить возможность кровообращения в двумерном существе.

Рис. 36. Важность существования трех измерений.

В пространстве, имеющем больше трех измерений, планетные орбиты были бы нестабильными: планеты либо падали бы на Солнце, либо ускользали бы от его притяжения.

 

Наличие более чем трех пространственных измерений также создало бы проблемы (рис. 36). В этом случае гравитационное притяжение между двумя телами уменьшалось бы с их удалением друг от друга быстрее, чем в случае трех измерений. (В трех измерениях притяжение ослабевает вчетверо при удвоении расстояния. В четырех измерениях оно уменьшалось бы при этом в восемь раз, в пяти измерениях — в шестнадцать и так далее.) Это чревато тем, что орбиты обращающихся вокруг Солнца планет, таких как Земля, станут неустойчивыми: малейшее отклонение от круговой орбиты (например, вызванное гравитационным притяжением других планет) привело бы к тому, что Земля, двигаясь по спирали, стала бы удаляться от Солнца или приближаться к нему. Мы бы или замерзли, или сгорели. В мире более чем трех пространственных измерений это же изменение поведения силы тяготения с расстоянием в действительности не позволило бы самому Солнцу существовать в устойчивом состоянии, когда давление уравновешивает силу тяжести. Солнце либо рассеялось бы в пространстве, либо сколлапсировало, превратившись в черную дыру. В любом случае оно не могло бы служить источником тепла и света для жизни на Земле. В масштабах атома электрические силы, удерживающие электроны на орбитах вокруг ядра, вели бы себя подобно гравитации. Таким образом, электроны, перемещаясь по спиралям, либо покидали бы атом, либо врезались бы в его ядро. Так или иначе, существование атомов в известном нам виде было бы невозможно.

Итак, представляется очевидным, что жизнь — во всяком случае, известная нам — может существовать лишь в тех областях пространства-времени, где только одно измерение времени и три измерения пространства не свернуты до ничтожно малых размеров. Это означает, что (для объяснения наблюдаемой размерности пространства-времени) можно было бы обратиться к слабому антропному принципу, если бы удалось доказать, что теория струн, по крайней мере, допускает существование подобных областей Вселенной — а она, похоже, такое допускает. Возможно, существуют другие области Вселенной или другие вселенные (что бы это ни означало), в которых все измерения свернуты или развернуто больше четырех измерений, но в таких областях не будет разумных существ, которые смогли бы наблюдать иное число измерений.

Другая проблема с теорией струн состоит в том, что есть по меньшей мере пять различных ее версий (две теории открытых струн и три — замкнутых) и миллионы способов, которыми могут быть согласно теории свернуты дополнительные измерения. Почему нужно выбрать только одну теорию струн и один вид свертывания? Какое-то время казалось, что ответа на этот вопрос нет, и наука топталась на месте. Но вот, начиная примерно с 1994 г., ученые стали выявлять свойство, получившее название дуальности: различные теории струн и способы свертывания дополнительных измерений вели к одним и тем же результатам в четырех измерениях. Более того, помимо частиц, которые занимают отдельную точку в пространстве, и струн, которые являются линиями, были найдены другие объекты, названные р -бранами и занимающие в пространстве объемы с двумя и более измерениями. (Можно считать, что частица есть 0-брана, струна — 1-брана, но кроме них есть еще р -браны, где р может принимать значения от 2 до 9. 2-брану можно рассматривать как некое подобие двумерной мембраны. Труднее представить себе браны с большим числом измерений!) Похоже, сейчас имеет место некое своеобразное равноправие (в смысле равенства голосов) теорий супергравитации, струн р -бран: они, кажется, согласуются друг с другом, но ни одну из них нельзя считать основной. Все они выглядят как различные приближения к некой более фундаментальной теории, причем каждая из них верна в своей области.

Ученые ищут эту фундаментальную теорию, но пока безуспешно. Не исключено, что может не быть единой формулировки фундаментальной теории, как нельзя, по Гёделю, изложить арифметику в терминах единственного набора аксиом. Эта ситуация напоминает проблемы, возникающие в картографии: вы не сможете обойтись одной плоской картой, чтобы передать сферическую поверхность Земли или поверхность якорного кольца (тора). Вам понадобятся как минимум два листа карты для Земли и четыре для тора, чтобы корректно отобразить все точки7. Каждая карта справедлива для ограниченной области, но различные участки карт имеют области перекрытия. Коллекция карт обеспечивает полное описание поверхности. Возможно, что и в физике необходимо использовать разные формулировки теории в различных ситуациях, но две разные формулировки должны согласоваться друг с другом в ситуациях, где они обе применимы. Если это действительно так, то все собрание различных формулировок могло бы расцениваться как полная объединенная теория, пусть и не выраженная в форме одного набора постулатов. Но и это может быть больше того, что допускает природа. Что, если создание объединенной теории в принципе невозможно? Не гонимся ли мы за миражом? Кажется, есть три возможности.

1. Создание полной объединенной теории (или собрания взаимно перекрывающихся формулировок) возможно, и когда-нибудь мы ее сформулируем, если хватит ума.

2. Не существует никакой окончательной теории Вселенной — только бесконечная последовательность теорий, которые описывают Вселенную все более точно, но никогда не достигают абсолютной точности.

3. Не существует вообще никакой теории Вселенной: вне определенных рамок события невозможно предсказать, они происходят случайным и произвольным образом.

Некоторые склоняются в пользу третьей возможности на том основании, что существование исчерпывающего набора законов лишило бы Бога свободы менять Свой замысел и вмешиваться в ход мироздания. Тем не менее разве Господь, будучи всесильным, не мог бы ограничить Свою свободу, если бы захотел? Это приводит на память древний парадокс: способен ли Бог создать такой тяжелый камень, что сам не сможет его поднять? Фактически идея о том, что Бог захотел бы передумать, есть пример заблуждения, на которое указывал еще Блаженный Августин, когда Бога представляют существующим во времени, тогда как время — это лишь свойство Вселенной, Им созданной. Можно предположить, что Он отдавал себе отчет в Своих намерениях при сотворении мира!

С появлением квантовой механики мы пришли к осознанию того, что события не могут быть предсказаны с абсолютной точностью — всегда остается элемент неопределенности. Если хочется, можно приписать случайность вмешательству Бога. Но это было бы очень странное вмешательство: нет никаких признаков того, что оно преследует какую-либо цель. В противном случае это по определению не было бы случайностью. Сегодня мы фактически устранили третью из перечисленных возможностей, пересмотрев цели науки: мы стремимся к тому, чтобы сформулировать набор законов, который позволит предсказывать события в пределах, установленных принципом неопределенности.

Вторая возможность, то есть существование бесконечной последовательности все более и более совершенных теорий, пока согласуется со всем нашим опытом. Во многих случаях экспериментаторы повышали точность измерений или выполняли наблюдения нового типа только для того, чтобы обнаружить не предсказанные существующей теорией новые явления, для истолкования которых создавалась более совершенная теория. Изучая элементарные частицы, взаимодействующие со все более и более высокими энергиями, мы можем ожидать открытия новых уровней строения материи, более фундаментальных, чем кварки и электроны, которые ныне считаются «элементарными» частицами.

Гравитация может положить предел этой череде упрятанных друг в друга «коробочек». Если бы существовала частица с энергией, превышающей так называемую энергию Планка, концентрация ее массы была бы столь высока, что она отсекла бы себя от остальной Вселенной и превратилась бы в небольшую черную дыру. Таким образом, последовательность все более совершенных теорий, похоже, должна иметь некий предел при переходе ко все более высоким энергиям, а значит, должна быть достижима некая окончательная теория Вселенной. Но все же планковская энергия очень далека от энергий, которые мы способны получить на современных лабораторных установках. И мы не сможем преодолеть этот разрыв с помощью ускорителей элементарных частиц, которые появятся в обозримом будущем. А ведь именно такие энергии должны были иметь место на самых ранних стадиях эволюции Вселенной. Есть неплохие шансы, что изучение ранней Вселенной и требования математической согласованности приведут к полной объединенной теории в пределах срока жизни некоторых из нас, если мы, конечно, не взорвем себя до тех пор!

Какое значение имело бы открытие окончательной теории Вселенной?

Как объяснялось в гл. 3, мы никогда не можем быть вполне уверены, что действительно создали правильную теорию, поскольку теории нельзя доказать. Но, если бы теория была математически последовательной и всегда давала бы предсказания, согласующиеся с наблюдениями, было бы разумно считать, что она верна. Это поставило бы точку в длинной и великолепной главе истории борений человеческого разума за познание Вселенной. Но это также революционным образом перевернуло бы понимание обычным человеком законов, которые управляют Вселенной.

Во времена Ньютона образованный человек мог овладеть всем знанием, накопленным цивилизацией, по крайней мере, в общих чертах. Но с тех пор темпы развития науки сделали это невозможным. Поскольку теории постоянно пересматриваются с учетом новых наблюдений, они никогда не излагаются достаточно сжато и просто, чтобы их могли постичь обычные люди. Для этого нужно быть специалистом, но даже тогда вы вправе надеяться на полное понимание лишь малой доли научных теорий.

Кроме того, прогресс науки настолько стремителен, что в школе или университете всегда преподаются несколько устаревшие знания. Лишь немногим людям удается следить за быстро раздвигающимися границами знания, если они посвящают этому все свое время и сосредоточиваются на маленькой области. Остальная часть населения имеет слабое представление о совершаемых прорывах и о том волнении, которое они производят в умах ученых.

С другой стороны, если верить Эддингтону, семьдесят лет назад только два человека понимали общую теорию относительности. В настоящее время ее понимают десятки тысяч универсантов и многие миллионы людей, по крайней мере, знакомы с ее идеями. Если бы удалось создать полную объединенную теорию, то появление сжатого и простого ее изложения оказалось бы лишь вопросом времени, и, подобно теории относительности, ее стали бы преподавать в школах, по крайней мере в общих чертах. Мы все смогли бы тогда получить некоторое представление о законах, которые управляют Вселенной и ответственны за наше существование.

Но даже открытие полной объединенной теории не означало бы возможности предсказывать все события по двум причинам. Первая причина — ограничение, которое накладывает на нашу предсказательную способность квантово-механический принцип неопределенности. Нет никаких способов его обойти. На практике, однако, это первое ограничение менее жестко, чем второе. Второе вытекает из того факта, что мы, вероятнее всего, не сможем решить уравнения такой теории, за исключением тех, что описывают очень простые ситуации. Как уже говорилось, никто не может точно решить квантовые уравнения для атома, в котором вокруг ядра обращается более одного электрона. Мы даже не располагаем точным решением задачи о движении трех тел в такой простой теории, как закон всемирного тяготения Ньютона, и трудностей становится тем больше, чем больше число тел и чем сложнее теория. Приближенные решения обычно удовлетворяют наши практические нужды, но они вряд ли соответствуют тем большим ожиданиям, что связаны с понятием «объединенная теория всего сущего»!

Сегодня мы уже знаем законы, управляющие поведением материи во всех состояниях, кроме самых экстремальных. В частности, мы знаем законы, которые составляют фундамент химии и биологии. Но мы, безусловно, не можем считать задачи этих дисциплин решенными. И пока еще мы не слишком преуспели в предсказании человеческого поведения с помощью математических уравнений! Итак, даже отыскав набор основных законов, мы окажемся перед бросающей вызов человеческому интеллекту задачей совершенствования приближенных методов, не решив которую мы не научимся предсказывать вероятные последствия в сложных реальных ситуациях. Полная согласованная объединенная теория — это лишь первый шаг. Наша цель состоит в полном объяснении происходящих вокруг нас событий и нашего собственного существования.

 

1 От англ. glue — клей.

2В русскоязычной литературе объединенные теории трех взаимодействий — электромагнитного, слабого и сильного — принято называть большим объединением. Термин великое объединение резервируется для единой «теории всего», которая должна включать все четыре известных взаимодействия.

3 Так выглядит процесс слияния струн на трехмерной пространственно-временной диаграмме, где два измерения пространственные, а одно — временное. Значительно более подробное популярное описание теории струн дается в замечательной книге Брайана Грина «Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории» (М., 2004).

4 И наоборот: частицы земного вещества испускают гравитоны, поглощаемые Солнцем.

5 Такая поверхность называется тором.

6 В русскоязычной литературе по философии и космологии принято несколько иначе проводить разграничение между слабым и сильным антропными принципами. Слабый антропный принцип утверждает, что мы наблюдаем Вселенную такой, как она есть, потому что в иной вселенной не могли бы возникнуть разумные существа, а сильный — что Вселенная должна быть такой, чтобы в ней могли возникнуть разумные существа. При таком подходе сразу видно, что слабый антропный принцип принадлежит науке, а сильный — религии и философии. Те же две интерпретации, которые приводят авторы, по сути, являются разными вариантами слабого антропного принципа. Так что в следующем абзаце они, авторы, вполне закономерно приходят к выводу, что между двумя версиями нет принципиальной разницы.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)