АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Проблема энергосбережения и пути ее решения

Читайте также:
  1. IX. Сложные решения
  2. Wiley, 1993), p. 142. Перепечатано с разрешения.
  3. А. УРИБЕ И ПРОБЛЕМА ТЕРРОРИЗМА
  4. Абсолютизм. Общая характеристика. Особенности стиля. Используемые композиционные решения, конструктивные элементы и строительные материалы. Ключевые здания. Ключевые архитекторы.
  5. Алгоритм решения дробно-рациональных неравенств.
  6. Алгоритм решения задачи
  7. Алгоритм решения ЗЛП графическим методом
  8. Алгоритм решения.
  9. Анализ общего решения дифференциального уравнения изгиба балки на упругом основании
  10. Анализ результатов и обоснование принятого решения
  11. Анализ результатов решения
  12. Архитектура кхмеров. Общая характеристика. Особенности стиля. Используемые композиционные решения, конструктивные элементы и строительные материалы. Ключевые здания.

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений, а со стороны спроса — увеличением автомобильного парка и ростом объема производства полимерных материалов.

Наращивание добычи топливно-энергетических ресурсов повлекло за собой серьезное ухудшение экологической ситуации (расширение открытой добычи полезных ископаемых, добыча на шельфе и др.). А рост спроса на эти ресурсы усилил конкуренцию как стран — экспортеров топливных ресурсов за лучшие условия продажи, так и между странами-импортерами за доступ к энергетическим ресурсам. Экстенсивный путь решения энергетической проблемы предполагает дальнейшее увеличение добычи энергоносителей и абсолютный рост энергопотребления.

Существует ряд предложений, призванных экономить энергию:

· Энергия солнца. Солнце — источник энергии очень большой мощности. 22 дня солнечного сияния по суммарной мощности, приходящей на Землю, равны всем запасам органического топлива на Земле. Проблема в том, как использовать солнечную энергию в производственных и бытовых целях. На практике солнечная радиация может быть преобразована в электроэнергию непосредственно или косвенно.

· Энергия ветра. Ветры дуют везде, они могут дуть и летом, и зимой, и днем, и ночью — в этом их существенное преимущество перед самим солнечным излучением.

Ветер дует почти всегда неравномерно. Значит, и, генератор будет работать неравномерно, отдавая то большую, то меньшую мощность, ток будет вырабатываться переменной частотой, а то и полностью прекратится, и притом, возможно, как раз тогда, когда потребность в нем будет наибольшей. В итоге любой ветроагрегат работает на максимальной мощности либо малую часть времени, а в остальное время он либо работает на пониженной мощности, либо просто стоит.

· Энергия воды. Гидроэнергетика дает почти треть электроэнергии, используемой во всем мире. Этот метод имеет преимущества: не загрязняет атмосферу, легко управляется прием поворота механизированного клапана на подаче воды. Однако гидроэнергетика не безвредна для окружающей среды, имеются трудности в широком развитии гидроэлектрических ресурсов. Требуется накопление больших объемов воды, затопление долин и обширных площадей земли, часто ценной для коммерческого использования и для отдыха людей, или ненарушенных заповедных земель, в которых происходят нежелательные экологические изменения. Существуют приливные электростанции, в которых используется перепад уровней воды, образующийся во время прилива и отлива. Для этого отделяют прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Затем воду выпускают, и она вращает гидротурбины. Приливные электростанции могут быть ценным энергетическим подспорьем местного характера, но на Земле не так много подходящих мест для их строительства, чтобы они могли изменить общую энергетическую ситуацию.[4]

· Атомная энергия. Ядерная энергия образуется в результате преобразования массы в энергию в соответствии с законом Эйнштейна:

Е = mc2. Большинство существующих ядерных станций получает энергию в результате расщепления изотопа урана — уран-235. Тепло, освобождающееся при расщеплении, используется для выработки водяного пара, направляемого к турбинам, которые вырабатывают электроэнергию в основном таким же образом, как на тепловых электростанциях.

· Аккумулирование энергии. Более широкое применение могло бы найти использование мощности базового режима электростанции для накачки сжатого воздуха в подземные полости. Турбины, работающие на сжатом воздухе, позволили бы экономить первичные энергоресурсы в периоды повышенной нагрузки.

· Передача электроэнергии. Большие энергетические потери связаны с передачей электроэнергии. Для их снижения расширяется использование линий передачи и распределительных сетей с повышенным уровнем напряжения. Альтернативное направление – сверхпроводящие линии электропередачи. Электросопротивление некоторых металлов падает до нуля при охлаждении до температур, близких к абсолютному нулю.

· Водород как теплоноситель. Водород – это легкий газ, но он превращается в жидкость при низких температурах. Теплотворная способность жидкого водорода намного больше, чем природного газа. У водорода имеется и экологическое преимущество перед природным газом: при сжигании в воздухе он дает в основном лишь пары воды.

· Магнитогидродинамика (МГД). Это метод, позволяющий более эффективно использовать ископаемые энергоносители. Идея состоит в том, чтобы заменить медные токовые обмотки обычного машинного электрогенератора потоком ионизованного (проводящего) газа. Наибольший экономический эффект МГД-генераторы могут давать, вероятно, при сжигании угля. Поскольку в них нет движущихся механических частей, они могут работать при очень высоких температурах, а это обеспечивает высокий КПД

10 Методы и средства решения практических проблем электромагнитной совместимости на энергообъектах. Основные виды помех, опасных для электронной аппаратуры, и их характеристики.

Электромагнитные влияния могут проявляться в виде обратимых и необратимых нарушений. Так, в качестве обратимого нарушения можно назвать шум при телефонном разговоре. К необратимому нарушению относится сбой в работе системы релейной защиты, приведший к отключению нагрузки.

ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ - Это способность аппаратуры нормально функционировать в определенной электромагнитной обстановке (ЭМО), не создавая при этом электромагнитных помех, опасных для других технических средств.

Электромагнитная совместимость (ЭМС) является современным понятием, объединяющим такие известные электромагнитные явления, как радиопомехи, влияние на сеть, перенапряжения, колебания напряжения сети, электромагнитные влияния, паразитные связи, фон промышленной частоты 50 Гц, воздействия заземления и т.д.

Совокупность электромагнитных полей (помех), влияющих на качество функционирования объектов электроэнергетики называется ЭЛЕКТРОМАГНИТНОЙ ОБСТАНОВКОЙ (ЭМО).

Электромагнитная помеха – любое электромагнитное явление естественного или искусственного происхождения, которое может ухудшить качество функционирования технического средства.

Основные виды помех:

– короткие замыкания (КЗ)

– грозовые разряды

– переходные режимы работы высоковольтного оборудования

– внутренние источники помех в помещениях здания с аппаратурой

– радиосредства

Максимальную амплитуду ЭМП, при которой еще не возникает недопустимого ухудшения функциональных свойств аппаратуры, будем называть уровнем устойчивости этой аппаратуры к действию данной помехи.

Различают узкополосные и широкополосные источники. Процесс называется узкополосным, когда энергия спектра

сосредоточена в основном в относительно узкой полосе частот около некоторой фиксированной частоты ω0 или широкополосным, если указанное условие не выполняется. Источниками узкополосных помех, как правило, являются искусственно созданными человеком. Такие источники характеризуются амплитудой или действующим значением помехи при соответствующей частоте.

Для борьбы с помехами применяются пассивные помехоподавляющие устройства:

• фильтры,

• ограничители напряжения,

• разделительные элементы

• экраны.

Они могут быть установлены непосредственно у чувствительного элемента или около источника помех.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)