АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Образование конечной мочи, ее состав и свойства. Реабсорбция в канальцах, механизм ее регуляции

Читайте также:
  1. E согласно механизму сотрудничества с системами фермента.
  2. I. Самообразование.
  3. I. Составьте предложения, поставив слова в правильном порядке.
  4. II фактор составляют показатели, свидетельствующие о богатстве и сложности понятийных репрезентаций.
  5. II. Образование и употребление грамматических форм
  6. II.1.4. Семантический механизм создания образного сравнения
  7. III. Изучение геологического строения месторождений и вещественного состава песка и гравия
  8. III. Смешивание составов и набивка гильз
  9. IV. Словарный состав современного русского литературного языка в функциональном, социолингвистическом аспектах и с точки зрения его происхождения (2 часа).
  10. IX.Образование девочек
  11. L.3.2. Процессы присоединения частиц. Механизмы роста.
  12. PzKpfw 38(t) Praga – чешский танк на немецкой службе из состава 8-й тд

В сутки у человека образуется и выделяется от 0,7 до 2 л мочи. Эта величина носит название суточного диуреза и зависит от количества выпитой жидкости, так как здоровым человеком выделяется 65—80 % ее объема с мочой. Основное количество мочи образуется днем, тогда как ночью оно составляет не более половины дневного объема. Удельный вес мочи колеблется в широком диапазоне — от 1005 до 1025, обратно пропорционально объему принятой жидкости и образовавшейся мочи.

Реакция суточной мочи обычно слегка кислая, однако рН колеблется в зависимости от характера питания. При растительной пище моча приобретает щелочную реакцию, а при белковой — становится более кислой.

Моча обычно прозрачна, но имеет небольшой осадок, получаемый при центрифугировании и состоящий из малого количества эритроцитов, лейкоцитов и эпителиальных клеток. В осадке мочи, собранной за 12 ночных часов, содержится от 0 до 400 000 эритроцитов, от 300 000 до 1,8 миллионов лейкоцитов. Здесь также могут присутствовать кристаллы мочевой кислоты, уратов и оксалата кальция (в кислой моче) или кристаллы мочекислого аммония, фосфорнокислого и углекислого кальция (в щелочной моче). Белок и глюкоза в конечной моче практически отсутствуют, содержание аминокислот не превышает 0,5 г за сутки. Поскольку в канальцах нефрона происходит обратное всасывание основной части профильтровавшейся воды, солей и других веществ, то выделяется их с мочой от 45 % (мочевина) до 0,04 % (бикарбонат) от профильтровавшегося количества. Однако за счет всасывания воды и процессов концентрирования мочи, а также секреции в канальцах, содержание в конечной моче ряда веществ превышает их концентрацию в плазме крови: мочевины в 67 раз, калия в 7, сульфатов в 90, фосфатов в 16 раз, тем самым обеспечивается эффективность их экскреции из организма. В небольших количествах в мочу поступают производные продуктов гниения белков в кишечнике — индола, скатола, фенола. В моче содержится широкий спектр органических кислот, небольшие концентрации витаминов (кроме жирорастворимых), биогенные амины и их метаболиты, стероидные гормоны и их метаболиты, ферменты и пигменты, определяющие цвет мочи.

С мочой в разных концентрациях, зависящих от ее количества, выделяются практически все неорганические катионы и анионы, в том числе и широкий спектр микроэлементов.

Реабсорбция в канальцах, механизм.

 

При сравнении состава и количества первичной и конечной мочи выявляется, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках, что необходимо для поддержания их внешнего баланса. Этот процесс называется канальцевой реабсорбцией и в зависимости от отдела канальцев, где он происходит, различают реабсорбцию проксимальную и дисталъную. В процессе реабсорбции вода и вещества из просвета канальцев через люминальную мембрану поступают в цитоплазму клеток эпителия, затем через базолатеральную мембрану выносятся из клеток эпителия в интерстициальное пространство, после чего поступают в перитубулярные (околоканальце-вые) капилляры. Такой путь реабсорбции носит название трансцеллюляр-ного, в его основе лежат общие механизмы транспорта веществ через плазматические мембраны. Кроме того, возможен путь реабсорбции через плотные соединения между клетками эпителия посредством простой диффузии или переносом вещества вместе с растворителем, что носит название парацеллюлярного пути реабсорбции. Реабсорбция представляет собой транспорт веществ из мочи в лимфу и кровь, и в зависимости от механизма выделяют пассивный, первично и вторично активный транспорт.

Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи — глюкозы, белка, аминокислот и витаминов. В проксимальном отделе канальцев всасывается 2/з профильтровавшихся воды и ионов натрия (рис. 14.7), большие количества ионов калия, двухвалентных катионов, анионов хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав из-за неодинаковой реабсорбции разных компонентов уже существенно отличается от плазмы крови, осмотическое давление первичной мочи остается таким же, как в плазме.

Эпителий проксимального канальца хорошо проницаем для воды, благодаря наличию в апикальной мембране водных каналов, образованных особыми белковыми молекулами аквапоринами. В структурах нефрона описано 6 типов аквапоринов, первый из них (AQP-1) имеется в мембранах клеток проксимальных канальцев (рис. 14.8). Всасывание воды происходит пассивно путем простой диффузии по осмотическому градиенту и прямо зависит от реабсорбции ионов натрия хлорида, других осмотически активных веществ. Благодаря этому содержимое проксимального отдела остается изоосмотичным плазме крови.

Реабсорбция ионов натрия в проксимальном отделе осуществляется несколькими механизмами активного и пассивного транспорта. Во-первых, реабсорбция натрия осуществляется первично активным транспортом. Ионы натрия входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по концентрационному градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энергию АТФ. Именно деятельность этих насосов обеспечивает градиент концентрации ионов натрия между внутриканальцевой и внутриклеточной средами. Во-вторых, на апикальной мембране имеется электронейтральный переносчик, обеспечивающий активный обмен Na+ и Н+, при этом ион натрия поступает в клетку в обмен на удаляемый из клетки Н-ион. Такой механизм транспорта носит название антипорта.

Этот переносчик обеспечивает и всасывание бикарбонатного аниона. Профильтровавшийся бикарбонатный анион вместе с Н-ионом образуют угольную кислоту: HCO3 + Н+ = Н2С03. Располагающаяся на щеточной каемке эпителия канальца карбоангидраза катализирует разложение в канальцевой жидкости угольной кислоты: Н2С03 о Н20 + С02, после чего С02 диффундирует в клетку по градиенту концентрации. В клетке под влинием цитоплазменной карбоангидразы протекает обратная реакция: С02 + Н20=Н2С03, угольная кислота диссоциирует: Н2С03 о Н+ + HCO3. Бикарбонатный анион (НСОз) пассивно переносится в перитубулярную жидкость по электрохимическому градиенту, создаваемому активным переносом натрия через ба-золатеральную мембрану, а Н-ион через апикальную мембрану с помощью антипорта Na+-H+ выводится в просвет канальца. Таким образом, сопровождающим всасывающийся ион натрия в начальных отделах проксимального канальца анионом является бикарбонат. Анионы хлора всасываются в начальных отделах плохо из-за низкой проницаемости стенки. Объем мочи в канальце уменьшается из-за пассивной реабсорбции воды, и концентрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты уже проницаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту концентрации всасываются из мочи путем парацеллюлярной диффузии, создавая электрохимический градиент для натрия. В-третьих, ион натрия реабсорбируется пассивно, по электрохимическому градиенту, вслед за анионом хлора. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хлорида) носит название котранспорта. В-четвертых, на апикальной мембране расположены переносчики-котранспортеры натрия и органических веществ (глюкозы, аминокислот), натрия и фосфата или сульфата.

Проксимальная реабсорбция глюкозы и аминокислот осуществляется с помощью специальных переносчиков щеточной каемки апикальной мембраны эпителиальных клеток. Эти переносчики транспортируют глюкозу или аминокислоту, только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту концентрации внутрь клеток ведет к транспорту через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация натрия в эпителиальной клетке, создающая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-калиевого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется активным удалением натрия из клетки, такой вид транспорта называют вторично активным, или симпортом, т. е. совместным пассивным транспортом одного вещества (глюкоза) из-за активного транспорта другого (натрия) с помощью одного переносчика.

Реабсорбция пептидов и белков осуществляется практически полностью в проксимальных канальцах. Количество профильтровавшегося белка относительно невелико и составляет около 1,8 г в сутки. Некоторую его часть составляют альбумины, но фильтрационный барьер клубочков проходят и полипептиды меньшего размера, и в первичную мочу фильтруются, например, соматотропин, а также лизоцим и др. В конечную мочу поступает не более 0,15 г белка в сутки (рис. 14.10). Молекулы альбуминов после связывания с рецепторами на люминальной мембране клеток эпителия канальцев подвергаются эндоцитозу, внутриклеточные пузырьки поглощенного белка сливаются с лизосомами и белковые молекулы гидролизуются пеп-тидазами (аналог внутриклеточного пищеварения). Продукты гидролиза, в основном аминокислоты, выводятся в интерстициальную жидкость и поступают в перитубулярные капилляры. Пептиды, особенно с короткой цепью, подвергаются гидролизу ферментами щеточной каемки (аналог мембранного пищеварения), образующиеся аминокислоты реабсорбируются из просвета канальцев.

Дистальная реабсорбция ионов и воды по объему значительно м еньше проксимальной. Однако, существенно меняясь под влиянием регулирующих ее, преимущественно гормональных, воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разведенную мочу (в зависимости от водного баланса организма).

В дистальном отделе нефрона происходит активная реабсорбция ионов натрия. Хотя здесь всасывается всего 10 % от профильтровавшегося количества катиона, этот процесс обеспечивает выраженное уменьшение его концентрации в моче и, напротив, повышение концентрации в интерстициальной жидкости, что создает значительный градиент осмотического давления между мочой и интерстицием, необходимый для всасывания из мочи воды.

Анион хлора всасывается в толстой восходящей части петли Генле благодаря наличию в апикальной мембране клеток эпителия переносчика-котранспортера ионов хлора, натрия и калия, а в дистальных извитых канальцах и собирательных трубочках анион хлора реабсорбируется пассивно по электрохимическому градиенту вслед за активным транспортом натрия. Способность эпителия дистальных канальцев секретировать в мочу Н-ионы связана с реабсорбцией ионов натрия, этот вид транспорта в виде обмена натрия на протон получил название «антипорт». Активно всасывается в дистальном отделе канальцев ионы калия, кальция и фосфатов.

Стенка дистального извитого канальца из-за отсутствия аквапоринов имеет низкую проницаемость для воды и, несмотря на реабсорбцию здесь ионов натрия и хлорида, вода почти не всасывается и в собирательные трубки поступает гипотоническая моча.

Регуляция канальцевой реабсорбции осуществляется как нервным, так и, в большей мере, гуморальным путем.

Нервные влияния реализуются преимущественно симпатическими проводниками и медиаторами через бета-адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эффекты проявляются в виде активации процессов реабсорбции глюкозы, ионов натрия, воды и анионов фосфатов и осуществляются через систему вторичных посредников (аденилатциклаза — цАМФ). Нервная регуляция кровообращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирование мочи. Сосудистые эффекты нервной регуляции также опосредуются через внутри-почечные системы гуморальных регуляторов — ренин-ангиотензиновую, кининовую, простагландины и др.

Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравен-трикулярных ядрах гипоталамуса, по аксонам нейронов транспортируется в нейрогипофиз, откуда и поступает в кровь. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V2-типу, на поверхности базолатеральной мембраны клеток эпителия. Образование гормон-рецепторного комплекса влечет за собой через посредство GS-белка и гуанилового нуклеотида активацию аденилатциклазы и образование цАМФ, активацию синтеза и встраивания аквапоринов 2-го типа («водных каналов») в апикальную мембрану клеток эпителия собирательных трубочек. Перестройка ультраструктур мембраны и цитоплазмы клетки ведет к образованию внутриклеточных специализированных структур, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя транспортируемой воде смешиваться с цитоплазмой и препятствуя набуханию клетки. Такой трансцеллюлярный транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основного межклеточного вещества, тем самым способствуя межклеточному пассивному транспорту воды по осмотическому градиенту.

Канальцевая реабсорбция воды регулируется и другими гормонами. По механизму действия все гормоны, регулирующие реабсорбцию воды, делятся на шесть групп:
• повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);
• меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон);
• меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);
• меняющие активный транспорт натрия и хлорида, а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);
• повышающие осмотическое давление канальцевой мочи за счет нере-абсорбированных осмотически активных веществ, например глюкозы (контринсулярные гормоны);
• меняющие кровоток по прямым сосудам мозгового вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин-П, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Канальцевая реабсорбция электролитов, так же как и воды, регулируется преимущественно гормональными, а не нервными влияниями.

Реабсорбция ионов натрия в проксимальных канальцах активируется альдостероном и угнетается паратирином, в толстой части восходящего колена петли Генле реабсорбция натрия активируется вазопрессином, глюка-гоном, кальцитонином, а угнетается — простагландинами Е. В дистальном отделе канальцев главными регуляторами транспорта натрия являются альдостерон (активация), простагландины и атриопептид (угнетение). Основной активатор реабсорбции натрия — альдостерон — обеспечивает образование и активацию всех структур, необходимых для транспорта натрия: компонентов натрий-калиевого насоса базолатеральной мембраны и ферментов его энергетического обеспечения, структур натриевых каналов апикальной мембраны и переносчиков иона

Наиболее отчетливо выражена активация реабсорбции ионов натрия под влиянием альдостерона в корковом отделе собирательных трубочек. Действие альдостерона имеет место не только в почках, но также и в желудочно-кишечном тракте, железах внешней секреции — везде этот гормон способствует всасыванию натрия в кровь. В почках альдостерон стимулирует также секрецию ионов калия в мочу.

Регуляция канальцевого транспорта ионов кальция, фосфата и частично магния обеспечивается, в основном, кальций-регулирующими гормонами. Влияния паратирина отличаются в разных отделах канальцевого аппарата почки. В проксимальных канальцах (прямой отдел) всасывание кальция происходит параллельно с транспортом натрия и воды. Угнетение реабсорбции ионов натрия в этом отделе под влиянием паратирина сопровождается параллельным снижением реабсорбции ионов кальция.

За пределами проксимального канальца паратирин избирательно усиливает реабсорбцию кальция, особенно в дистальном извитом канальце и корковой части собирательных трубочек. Реабсорбция ионов кальция активируется также кальцитриолом, а подавляется кальцитонином. Всасывание анионов фосфата в канальцах почки угнетается и паратирином (проксимальная реабсорбция), и кальцитонином (дистальная реабсорбция), а усиливается кальцитриолом и соматотропином. Паратирин активирует реабсорбцию ионов магния в корковой части восходящего колена петли Генле и тормозит проксимальную реабсорбцию аниона бикарбоната.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)