АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Схемы и циклы двухступенчатых холодильных машин

Читайте также:
  1. Анализ работы логической схемы.
  2. Бланк Карты-схемы
  3. Блок ЛДМ. Назначение , работа схемы при приёме сигнала ТУ на ЛП.
  4. Блок ЦС ДЦ «Нева». Назначение, работа схемы при формировании и передаче сигнала ЦС
  5. Блок ЦТР ДЦ «Нева». Назначение, работа схемы при приеме сигнала ТС на ЦП
  6. В 1965г. ввёл новую схему - «Крымские связки». Однако через 13 лет от этой схемы пришлось
  7. В АЛСН числового и частотного кода при электротяге постоянного тока схемы кодирования рельсовой цени в маршрутах отправления путей 2П. и 411 кодовключающее реле
  8. Вложенные циклы
  9. Вложенные циклы.
  10. Возможные схемы ректификации нефтей.Преимущества комбинированных установок.
  11. Волны, спирали и круги (циклы) стыда.
  12. Выбор аэродинамической схемы

Существует большое количество схем холодильных машин двухступенчатого сжатия с однократным и двукратным дросселированием; с полным и неполным промежуточным охлаждением; с одним или двумя испарителями; с теплообменниками; с эжектором и др. В данном учебном пособии рассматриваются только некоторые наиболее распространенные схемы.

Причины перехода к многоступенчатому сжатию.

При снижении температуры кипения холодильного агента в испарителе То соответственно уменьшается и давление кипения Ро. Также при повышении температуры конденсации Тк увеличивается давление конденсации Ро. Снижение давления кипения и повышение давления конденсации вызывает увеличение степени повышения давлений π = Рко. Возрастание степени повышения давлений π приводит к следующим отрицательным явлениям:

1.Повышается температура нагнетания в компрессоре, которая может превысить предельно допустимые значения. Допустимые температуры нагнетания для аммиачных поршневых компрессоров 160 оС, для хладоновых – 130 оС. При более высоких температурах в компрессоре может произойти разложение холодильного агента и масла, ухудшение смазывающей способности масла и его самовоспламенение.

2.Возрастают необратимые потери при дросселировании, в результате чего уменьшается удельная холодопроизводительность цикла, а значит и полная холодопроизводительность всей холодильной машины.

3.В испаритель поступает большее количество пара и меньше жидкого холодильного агента, а теплоотдача от пара в десятки раз хуже, чем от жидкости. Это приводит к снижению интенсивности теплообмена в аппарате.

4.Увеличивается удельная работа цикла, что вызывает повышение потребляемой мощности компрессора при том же массовом расходе холодильного агента.

5.Ухудшаются все объемные и энергетические коэффициенты компрессора, что ведет к снижению производительности и увеличению потребляемой мощности компрессора.

6.На узлы и детали компрессора воздействуют более высокие силы. Однако все узлы и детали имеют определенный предел прочности. Так например, для современных аммиачных одноступенчатых холодильных машин разность давлений конденсации Рк и кипения Ро не должна превышать 1,7 Мпа.

Таким образом, при определенных температурных режимах, производство холода одноступенчатой холодильной машиной может оказаться экономически невыгодным, а в некоторых случаях и невозможным. Исследования работы промышленных холодильных машин показали, что одноступенчатое сжатие не целесообразно при степени повышения давлений более или равно восьми, т.е. при π = Рко ≥ 8.

Выбор промежуточного давления.

В циклах двухступенчатых холодильных машин величина промежуточного давления имеет большое значение. Промежуточное давление влияет на работу сжатия в ступенях низкого и высокого давлений и соответственно на потребляемую мощность холодильной машины. Существует несколько способов определения промежуточного давления. Как правило, оно рассчитывается из условий наименьшей суммарной работы в ступенях сжатия. Для идеального газа справедливо уравнение

где Ро, Рк и Рпр – соответственно давления кипения, конденсации и промежуточное, Па;

k – показатель политропы сжатия.

Отсюда промежуточное давление будет равно

Холодильный агент не идеальный газ, поэтому данное уравнение является приближенным для действительных хладагентов.

По другим способам оптимальное промежуточное давление находится методом последовательного приближения по максимальному холодильному коэффициенту или минимальной суммарной объемной производительности в ступенях сжатия. Для этого первоначально промежуточное давление находится по уравнению для идеального вещества. Рассчитывается цикл и определяется холодильный коэффициент или минимальная суммарная объемная производительность. Затем принимаются несколько больших и меньших значений промежуточного давления и расчеты повторяются. Оптимальным является то промежуточное давление при котором будет наибольший холодильный коэффициент или наименьшая суммарная объемная производительность ступеней сжатия.

Как показали сопоставления промежуточные давления, найденные по разным способам, различаются незначительно. Поэтому в обычных инженерных расчетах можно пользоваться уравнением для идеального газа. При более точных расчетах необходимо выбирать более точные способы.

 


Схема и цикл с промежуточным охладителем и однократным дросселированием.

Двухступенчатая холодильная машина, функциональная схема которой представлена на рисунке 5.5. включает в себя компрессор низкого давления, компрессор высокого давления, промежуточный охладитель, конденсатор, испаритель и дроссельное устройство. Термодинамический цикл в S-T и h-Р диаграммах показан на том же рисунке.

Перегретый пар холодильного агента, выходящий из испарителя, поступает на всасывание в компрессор низкого давления. В компрессоре пар адиабатически сжимается в процессе 1-2 от давления кипения Ро до промежуточного давления Рпр. При этом затрачивается работа сжатия lсн и температура пара повышается до температуры Т2. После ступени низкого давления сжатый горячий пар направляется в промежуточный охладитель, где охлаждается при постоянном давлении Рпр в процессе 2-3 за счет теплообмена с внешней охлаждающей средой с отводом теплоты промежуточного охлаждения qп.о. В качестве охлаждающей среды в охладителе как правило используется тот же источник охлаждения, что и для конденсатора (вода или воздух). Поэтому температура охлажденного пара после промежуточного охладителя близка к температуре конденсации, т.е. Т3 ≈ Тк. Далее охлажденный пар всасывается компрессором высокого давления, в котором адиабатически сжимается в процессе 3-4 от промежуточного давления Рпр до давления конденсации Рк с затратой работы lсв. Затем сжатый пар поступает в конденсатор, где охлаждается и конденсируется при постоянном давлении в процессе 4-5, отдавая теплоту конденсации qк внешней охлаждающей среде. Образовавшаяся жидкость из конденсатора направляется к дроссельному устройству и дросселируется в нем при постоянной энтальпии в процессе 5-6 от давления конденсации Рк до давления кипения Ро. После дросселирования холодильный агент поступает в испаритель, где жидкость кипит при постоянном давлении Ро в процессе 6-1′ за счет подвода теплоты qoот охлаждаемой среды. Пар, образовавшийся при кипении, перегревается в процессе 1′-1, всасывается компрессором низкого давления и цикл повторяется снова.

Количество теплоты, подведенной к 1 кг холодильного агента в испарителе или удельная холодопроизводительность цикла равна.

qo = h1 - h6,

где qо – удельная холодопроизводительность цикла, Дж/кг;

h6, h1 - энтальпия холодильного агента на входе и выходе из испарителя, Дж/кг.

Количество теплоты, отведенной от 1 кг холодильного агента в конденсаторе или удельная теплота конденсации qк, Дж/кг рассчитывается по формуле:

qк = h4 – h5,

где h4 и h5 – энтальпия холодильного агента на входе и выходе из конденсатора, Дж/кг.

Удельные работы сжатия в компрессоре низкого давления и в компрессоре высокого давления определяются так:

lсн = h2 – h1,

lсв = h4 – h3,

где h1 и h2 – энтальпия пара хладагента на входе и выходе их компрессор низкого давления, Дж/кг;

h3, h4 – энтальпия пара хладагента на входе и выходе из компрессора высокого давления, Дж/кг.

Особенностью данного цикла является то, что компрессоры низкого и высокого давления имеют одинаковую массовую производительность.

Gа = Gан = Gав = .

Объемный расход в ступенях низкого и высокого давлений рассчитываются так:

Vан = νвсн • Gан = νвсн • Gа,

Vав = νвсв • Gав = νвсв • Gа,

где νвсн, νвсв – удельный объем пара хладагента на всасывании в ступени низкого и высокого давлений, м3/кг.

, примерно в 2÷3 раза.

Теоретические мощности компрессоров низкого и высокого давлений равны:

Nтн = lсн • Gан = lсн • Gа,

Nтв = lсв • Gав = lсв • Gа.

Общая потребляемая теоретическая мощность находится как сумма мощностей ступеней низкого и высокого давлений:

Nт = Nтн + Nтв = lсн • Gан + lсв • Gсв = (lсн + lсв) • Gа.

Термодинамическая эффективность цикла оценивается теоретическим холодильным коэффициентом εт, который равен отношению холодопроизводительности к теоретической мощности.

.

Такой цикл в промышленных холодильных машинах практически не применяется из-за низкой термодинамической эффективности и высоких температур нагнетания в ступени высокого давления, так как температура пара после охлаждения в промежуточном охладителе не снижается ниже + (20–30) оС.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)