АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Доказательство методом бесконечно малых

Читайте также:
  1. II. Доказательство некоторых понятий и фактов геометрии Лобачевского
  2. III. Задания для работы в малых группах.
  3. XIV. Безмерное счастье и бесконечное горе
  4. АВТОМАТИЗАЦІЯ УСТАНОВКИ ДЛЯ ОТРИМАННЯ РЕЧОВИНИ МЕТОДОМ ЗМІШУВАННЯ
  5. АВТОРСКИЙ ПРОЕКТ ФОРМИРОВАНИЯ КУЛЬТУРЫ ЛЮБВИ У ДЕТЕЙ –СОЦИАЛЬНЫХ СИРОТ МЕТОДОМ КАНИСТЕРАПИИ «ГОРОД СОЛНЦА» (Г. БАРНАУЛ)
  6. Алгоритм решения ЗЛП графическим методом
  7. Анализ однокомпонентных систем фотометрическим методом
  8. Аналіз та оцінка середовища підприємств за методом SWOT-аналізу
  9. АППРОКСИМАЦИЯ ОПЫТНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ
  10. Бесконечное и неделимое. Галилей и Николай Кузанский
  11. БЕСКОНЕЧНОСТЬ ШАХМАТНЫХ ВАРИАЦИЙ
  12. Бог, чем бы он ни был, имеет почти бесконечное число глаз.

Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди, жившему в первой половине XX века.

Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a, мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников):

Доказательство методом бесконечно малых

Пользуясь методом разделения переменных, находим

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов

Интегрируя данное уравнение и используя начальные условия, получаем

Таким образом, мы приходим к желаемому ответу

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет ). Тогда для константы интегрирования получим

 

Это еще один способ найти решение для теоремы Пифагора, опираясь на геометрию. Называется он «Метод Гарфилда».

Постройте прямоугольный треугольник АВС. Нам надо доказать, что ВС2=АС2+АВ2.

Для этого продолжите катет АС и постройте отрезок CD, который равен катету АВ. Опустите перпендикулярный AD отрезок ED. Отрезки ED и АС равны. Соедините точки Е и В, а также Е и С и получите чертеж, как на рисунке ниже:

Чтобы доказать терему, мы вновь прибегаем к уже опробованному нами способу: найдем площадь получившейся фигуры двумя способами и приравняем выражения друг к другу.

Найти площадь многоугольника ABED можно, сложив площади трех треугольников, которые ее образуют. Причем один из них, ЕСВ, является не только прямоугольным, но и равносторонним. Не забываем также, что АВ=CD, АС=ED и ВС=СЕ – это позволит нам упростить запись и не перегружать ее. Итак, SABED=2*1/2(AB*AC)+1/2ВС2.

При этом очевидно, что ABED – это трапеция. Поэтому вычисляем ее площадь по формуле: SABED=(DE+AB)*1/2AD. Для наших вычислений удобней и наглядней представить отрезок AD как сумму отрезков АС и CD.

Запишем оба способа вычислить площадь фигуры, поставив между ними знак равенства: AB*AC+1/2BC2=(DE+AB)*1/2(AC+CD). Используем уже известное нам и описанное выше равенство отрезков, чтобы упростить правую часть записи: AB*AC+1/2BC2=1/2(АВ+АС)2. А теперь раскроем скобки и преобразуем равенство: AB*AC+1/2BC2=1/2АС2+2*1/2(АВ*АС)+1/2АВ2. Закончив все преобразования, получим именно то, что нам и надо: ВС2=АС2+АВ2. Мы доказали теорему.

Конечно, этот список доказательств далеко не полный. Теорему Пифагора также можно доказать с помощью векторов, комплексных чисел, дифференциальный уравнений, стереометрии и т.п. И даже физики: если, например, в аналогичные представленным на чертежах квадратные и треугольные объемы залить жидкость. Переливая жидкость, можно доказать равенство площадей и саму теорему в итоге.

 

Само же древнеиндийское доказательство описано в XII веке в трактате «Венец знания» («Сиддханта широмани») и в качестве главного аргумента автор использует призыв, обращенный к математическим талантам и наблюдательности учеников и последователей: «Смотри!».

Но мы разберем это доказательство более подробно:

Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с. Катеты треугольника назовем а и b. В соответствии с чертежом сторона внутреннего квадрата это (a-b).

Используйте формулу площади квадрата S=c2, чтобы вычислить площадь внешнего квадрата. И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b)22+4*1\2*a*b.

Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c2=(a-b)2+4*1\2*a*b. В результате решения вы получите формулу теоремы Пифагора c2=a2+b2. Теорема доказана.

Это любопытное древнекитайское доказательство получило название «Стул невесты» - из-за похожей на стул фигуры, которая получается в результате всех построений:

Рис.1.

Рис. 2.

В нем используется чертеж, который мы уже видели на рис.3 во втором доказательстве. А внутренний квадрат со стороной с построен так же, как в древнеиндийском доказательстве, приведенном выше.

Если мысленно отрезать от чертежа на рис.1 два зеленых прямоугольных треугольника, перенести их к противоположным сторонам квадрата со стороной с и гипотенузами приложить к гипотенузам сиреневых треугольников, получится фигура под названием «стул невесты» (рис.2). Для наглядности можно то же самое проделать с бумажными квадратами и треугольниками. Вы убедитесь, что «стул невесты» образуют два квадрата: маленькие со стороной b и большой со стороной a.

Эти построения позволили древнекитайским математикам и нам вслед за ними прийти к выводу, что c2=a2+b2.

 

Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности.

Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:

Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.

Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны»:

 

Теорема Пифагора

 

 

Подготовил: Ученик 8-Б класса


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)