АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Как решить линейное уравнение?

Читайте также:
  1. В системе автоблокировки применяется линейное реле «Л» типа...
  2. Задание. Решить задачи
  3. КАВКАЗСКОЕ ЛИНЕЙНОЕ ВОЙСКО.
  4. Линейное дифференциальное уравнение первого порядка
  5. Линейное оборудование
  6. Линейное экспоненциальное сглаживание
  7. Не могли бы Вы решить уравнение Дирака?
  8. Решить задачу ЛП методом искусственного базиса
  9. Решить задачу на вывод формулы из уравнения. Придумать обратную к ней.

Существуют два способа решения. Первый способ – это так называемый метод вариации произвольной постоянной. Второй способ связан с заменой переменной, его также иногда называют методом Бернулли. В данной статье я не буду рассматривать метод вариации произвольной постоянной. Нет, он не сложнее, дело в том, что его значительно труднее объяснить, поэтому как-нибудь в другой раз. А вот метод замены переменной алгоритмически прост и понятен, и решение уравнения принимает чёткий трафаретный характер.

В который раз у меня хорошая новость! Линейное дифференциальное уравнение можно решить одной-единственной заменой:

, где и – некоторые, пока ещё неизвестные функции, зависящие от «икс».

Коль скоро проводится замена , то нужно выяснить, чему равна производная. По правилу дифференцирования произведения:

Подставляем и в наше уравнение :

В чём состоит задача? Необходимо найти неизвестные функции «у» и «вэ», которые зависят от «икс». И как раз этому будут посвящены все последующие действия.

После подстановки смотрим на два слагаемых, которые располагаются вот на этих местах:

У них нужно вынести за скобки всё, что можно вынести. В данном случае:

Теперь нужно составить систему уравнений. Система составляется стандартно:

Приравниваем к нулю то, что находится в скобках: .

Если , тогда из нашего уравнения получаем: или просто .

Уравнения записываем в систему:
.

Именно в таком порядке.

Система опять же решается стандартно.

Сначала из первого уравнения находим функцию . Это простейшее уравнение с разделяющимися переменными, поэтому его решение я приведу без комментариев.

Функция найдена. Обратите внимание, что константу на данном этапе мы не приписываем.

Далее подставляем найденную функцию во второе уравнение системы :

Да тут ништяк, экспоненты сокращаются, и получается диффур, даже не простейший, а для студенток муз-педа.

Из второго уравнения находим функцию .


Функция найдена. А вот здесь уже добавляем константу .

Ха. А задача-то решена! Вспоминаем, с чего всё начиналось: .
Обе функции найдены:

Записываем общее решение:

В ответе можно раскрыть скобки, это дело вкуса:

Ответ: общее решение

Проверка выполняется по той же технологии, которую мы рассматривали на уроке Дифференциальные уравнения первого порядка.

Берём полученный ответ и находим производную:

Подставим и в исходное уравнение :

Получено верное равенство, таким образом, общее решение найдено правильно.

Пример 2

Найти общее решение дифференциального уравнения

Решение: Данное уравнение имеет «классический» вид линейного уравнения. Проведем замену: и подставим и в исходное уравнение :

После подстановки проведем вынесение множителя за скобки, какие два слагаемых нужно мучить – смотрите предыдущий пример. Хотя, наверное, все уже поняли:

Составляем систему. Для этого приравниванием к нулю то, что находится в скобках: , автоматически получая и второе уравнение системы:

В результате:
.

Из первого уравнения найдем функцию :

– найденную функцию подставим во второе уравнение системы :

Теперь находим функцию . Уравнение опять получилось простенькое:

Обе функции найдены:


Таким образом:
Общее решение:

Ответ: общее решение:

Желающие могут выполнить проверку, для проверки в ответе лучше предварительно раскрыть скобки.

Пример 3

Найти общее решение дифференциального уравнения

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Если у вас возникли (или возникнут) проблемы технического характера, пожалуйста, вернитесь к первому уроку Дифференциальные уравнения первого порядка.

Как видите, алгоритм решения линейного уравнения довольно прост. В чем особенность решения линейных уравнений? Особенность состоит в том, что практически всегда в ответе получается общее решение, в отличие, например, от однородных уравнений, где общее решение хорошо выражается крайне редко и ответ приходится записывать в виде общего интеграла.

Рассмотрим что-нибудь с дробями

Пример 4

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

Напоминаю, что такая постановка вопроса также называется задачей Коши.

Решение: Алгоритм решения полностью сохраняется, за исключением того, что в конце прибавится один небольшой пунктик.

Обратите внимание, что уравнение представлено не совсем в стандартной форме. Этого в данном случае можно не делать, но я все-таки рекомендую всегда переписывать уравнения в привычном виде :

Данное ДУ является линейным, проведем замену:

Типовой вынос за скобки:

Составим и решим систему:

Из первого уравнения найдем :

– подставим найденную функцию во второе уравнение системы и найдем функцию :


Здесь интеграл взят методом подведения функции под знак дифференциала.

Обе функции найдены, таким образом, общее решение:

На заключительном этапе нужно решить задачу Коши, то есть найти частное решение, удовлетворяющее начальному условию . Как находить частное решения для диффура первого порядка, мы очень подробно рассмотрели на уроке Дифференциальные уравнения первого порядка.

В данном случае:

Ответ: частное решение:

А вот проверку частного решения еще раз повторим. Сначала проверяем, действительно ли выполняется начальное условие ?
– да, начальное условие выполнено.

Теперь берём полученный ответ и находим производную. Используем правило дифференцирования частного:

Подставим и в исходное уравнение :

Получено верное равенство, значит, задание выполнено верно.

Пример 5

Найти решение задачи Коши
,

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Перейдем к рассмотрению «частных видов» линейных уравнений, о которых шла речь в начале урока.

Пример 6

Найти решение задачи Коши для данного дифференциального уравнения
,

Решение: В данном уравнении слагаемые опять не на своих местах, поэтому сначала пытаемся максимально близко приблизить диффур к виду :

Что здесь особенного? Во-первых, в правой части у нас константа . Это допустимо. Во-вторых, рядом с производной есть множитель , который зависит только от «икс». Это тоже допустимо. Из-за этих особенностей линейное уравнение не перестает быть линейным.

Алгоритм решения полностью сохраняется за исключением пары нюансов в самом начале.

Проведем замену:

Теперь следовало бы выполнить вынесение множителя за скобки. Прозвучит каламбурно, но сначала нам нужно раскрыть скобку, поскольку одно из нужных нам слагаемых недоступно:

Вот теперь проводим вынесение множителя скобки:

Обратите внимание на тот факт, что за скобки мы вынесли не только функцию , но еще и «икс». Всё,что можно вынести за скобки – выносим.

Составим и решим систему:

Из первого уравнения найдем :

– подставим во второе уравнение системы:



Таким образом, общее решение:

Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Пример 7

Найти частное решение ДУ
,

Это пример для самостоятельного решения.

Какие трудности встречаются в ходе решения линейного уравнения? Основной камень преткновения состоит в том, что может появиться довольно сложный интеграл. Как правило, неприятный интеграл появляется при нахождении функции (в то время как с нахождением функции обычно проблем не возникает).

Рассмотрим пару примеров с такими интегралами.

Пример 8

Найти общее решение ДУ

Решение: Сначала приводим линейное уравнение к родному виду :

Уравнение кажется простым, но, как я уже отмечал, впечатление может быть обманчивым. Не редкость, когда «страшный» диффур на самом деле оказывается несложным, а «легкий» на вид диффур вызывает мучительную боль за бесцельно прожитые часы.

Проведем замену:


Составим и решим систему:
.

Из первого уравнения найдем :

– подставим найденную функцию во второе уравнение:

Такой интеграл, кстати, еще нигде не встречался в моих уроках. Он берется по частям. Вспоминаем формулу интегрирования по частям: . Но, вот незадача, буквы и у нас уже заняты, и использовать те же самые буквы в формуле – не есть хорошо. Что делать? Используем ту же формулу, но с другими буквенными обозначениями. Можно выбрать любые другие буквы, я привык записывать правило с «а» и «бэ»:

Интегрируем по частям:

Если возникли трудности или недопонимание, освежите знания на уроках Метод замены переменной и Интегрирование по частям.

Таким образом:

Ответ: общее решение:

Давненько я не вспоминал интегрирование по частям, даже ностальгия появилась. А поэтому еще один пример для самостоятельного решения. Какой пример? Конечно же, с логарифмом! Ну а чего еще от меня можно было ожидать? =)

Пример 9

Найти общее решение дифференциального уравнения

В предложенном примере проявлена небольшая вольность для любознательных фанатов матана. Нет, алгоритм остался точно таким же, просто я сразу начал решать диффур, не перенеся предварительно в правую часть. Полное решение и ответ в конце урока.

В моей коллекции есть уравнения и с более трудными интегралами, но сейчас речь идет о дифференциальных уравнениях. В этой связи я намеренно не включил в урок такие задачи, все-таки интегралы изучаются в другой теме.

Надеюсь, мои примеры и объяснения были полезны, до скорых встреч!

Решения и ответы:

Пример 3: Решение: Данное уравнение является линейным неоднородным, проведем замену:


Составим и решим систему:

Из первого уравнения найдем :




– подставим во второе уравнение системы:



Таким образом:
Ответ: общее решение:

Пример 5: Решение: Данное уравнение является линейным неоднородным, замена:


Составим и решим систему:
.
Из первого уравнения найдем :



– подставим во второе уравнение системы:



Общее решение:
Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Пример 7: Решение: Данное уравнение является линейным неоднородным, замена:


(раскрыли только левые скобки!)

Составим и решим систему:
.
Из первого уравнения найдем :

– подставим во второе уравнение:
(Примечание: здесь использовано основное логарифмическое тождество: ).

Таким образом, общее решение:

Найдем частное, соответствующее заданному начальному условию:

Ответ: частное решение:

Пример 9: Решение: Данное ДУ является линейным, проведем замену:


Решим систему:

Из первого уравнения найдем :





– подставим во второе уравнение:




Интегрируем по частям:


Таким образом:
Ответ: общее решение:

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.019 сек.)