АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Переваривание белков начинается в желудке

Читайте также:
  1. V2: Патофизиология белкового обмена
  2. Азотистый баланс - общий показатель обмена белков.
  3. Аминокислоты образуются при распаде белков.
  4. Белки, Биологическая ценность, суточная потребность, значение в питании населения. Основные продукты – источники полноценных белков.
  5. Белков методом коагуляции»
  6. Белково-витаминно-минеральные кормовые добавки для программы кормления бройлеров, производства «Кедайню биохемия» (Литва)
  7. Белково-калорическая недостаточность. Кваши-оркор. Профилактика.
  8. Белковое голодание, квашиоркор, их последствия и основные проявления.
  9. Белковое питание должно быть полноценным.
  10. Белковое питание должно быть полноценным.
  11. Биологическая роль белков
  12. БЛОК 4. ОБМЕН АМИНОКИСЛОТ И БЕЛКОВ

Секрет клеток слизистой желудка носит название желудочный сок. Это опалесцирующая желтоватая жидкость, содержащая 0.2-0.5% НCl с рН 1.5. В состав желудочного сока входят неорганические соли, ферменты (пепсин, ренин и липаза) и мукопротеины.

Трудно получить продукты секреции париетальных клеток, свободных от загрязнения другими компонентами желудочного сока, но самые чистые образцы, которые были проанализированы представляют изотонические растворы. Их концентрация H + эквивалентна 0.17 N HCl, с pH около 0.87. Поэтому, секрет париетальных клеток можно рассматривать как изотонический раствор практически чистой HCl, которая содержит 150 мэкв Cl- и 150 мэкв Н в литре, хотя pH цитоплазмы париетальных клеток подобно другим клеткам, равен 7.0-7.2, а сопоставимые концентрации Cl- и Н+ на литр плазмы -100 мэкв и 0.00004 мэкв соответственно.

со

 
 

ответственно.

Механизм образования HCl

 

Рис.5 Механизм образования HCl.

Большой градиент Н+ поддерживается работой специальной Н++ АТФазы, которая является структурным белком апикальной мембраны париетальных клеток. В покое на поверхности клеток имеется небольшое количество этого фермента, однако под влиянием стимуляторов, большие количества тубовезикулярных структур, которыми богаты париетальные клетки перемещаются к апикальной мембране и сливаясь с ней, увеличивают

количество фермента на поверхности и обеспечивают быстрое высвобождение Н+ взамен на К+. Такой обмен требует значительных затрат энергии и обеспечивается гидролизом АТФ. Выход Cl- из клеток обеспечивается градиентом электрохимического потенциала через каналы апикальной мембраны, которые активируются цАМФ; Н+ образуется путем диссоциации угольной кислоты, которая в свою очередь образуется в реакции гидратации СО2, катализируемой карбангидразой, ферментом, активность которого в париетальной клетке очень высокая. Второй компонент реакции диссоциации угольной кислоты HCO3- вытесняется из клетки на базолатеральной мембране париетальных клеток взамен на другой анион, главным образом на ион Cl- концентрация которого во внеклеточной жидкости самая высокая. Кровь во время секреции желудка сильно подщелачивается, что приводит в последующем к подщелачиванию мочи.

Секреция соляной кислоты стимулируется гистамином через H2 рецепторы, ацетилхолином через M3 мускариновые рецепторы, и гастрином, вероятно частично через гастриновые рецепторы в мембранах париетальных клеток. H2 рецепторы увеличивают внутриклеточный цАМФ при участии Gs белков, а мускариновые и гастриновые рецепторы проявляют свои эффекты, увеличивая концентрацию внутриклеточного свободного Ca2+. Действие одного из указанных регуляторов обычно потенцируeт ответ другого на возбуждение. Простагландины, особенно E ряда, ингибируют секрецию кислоты, активируя Gi белки, и это объясняет частично повышение риска язвенной болезни у людей, принимающих антивоспалительные препараты, которые ингибируют синтез простагландинов.

Циклическая АМФ и Ca2+ действуют через протеинкиназы, повышая транспорт H+ в желудочный просвет H+-K+ АТФазой.

 
 

Рис.6. Регуляторы секреции HLl и их вторичные посредники

 

 

Hсl понижает рН химуса, поступающего в желудок; денатурирует пищевые белки, создает оптимальный рН для действия пепсина и инициирует ограниченный протеолиз пепсиногена.

Пепсиноген — профермент пепсина с молекулярной массой 40 кД. Его активирование начинается обычно при участии Н+ и затем продолжается аутокатализом активными молекулами пепсина. В процессе активирования происходит удаление нескольких пептидов от N конца (42 аминокислоты), что снижает изоэлектрическую точку с рН 3.7 (пепсиноген) до

1.0 (пепсин). Пепсин в активном центре содержит остатки АСП, катализирует гидролиз внутренних пептидных связей (эндопептидаза) и обладает широкой специфичностью, преимущественно действуя на пептидные связи, образованные карбоксильными группами ароматических и больших алифатических аминокислот с образованием больших пептидных фрагментов.

Внутриполостное переваривание белков завершается ферментами поджелудочной железы

Панкреатический сок содержит ферменты, которые несут основную функцию в переваривании белков. Переваривание в кишечнике иногда называют панкреатическим перевариванием, поскольку основные ферменты образуются и секретируются поджелудочной железой. Сок поджелудочной железы имеет щелочную реакцию благодаря высокому содержанию HCO3- (около113 мэкв/л в сравнении с 24 мэкв/л в плазме). За сутки секретируется около 1500 мл панкреатического сока за сутки. Желчь и кишечные соки также нейтральны или щелочные, и все эти три секрета нейтрализуют соляную кислоту желудка, повышая pH дуоденального содержимого до 6.0-7.0 и еще более высокими становятся значения рН в нижних отделах тонкого кишечника.

Протеазы сока поджелудочной железы секретируются в неактивной форме и подвергаются координированному активированию, инициатором которого является кишечный фермент энтеропептидаза (энтерокиназа), активность которого в свою очередь повышается при попадании панкреатического сока в двенадцатиперстную кишку. Энтеропептидаза содержит 41 % углеводов, что способствует, по-видимому, защите самого фермента от гидролиза. Энтеропептидаза является структурным белком мембраны энтероцитов (щеточной каемки) и катализирует превращение трипсиногена в трипсин, запуская каскад протеолитических превращений и активирование всех панкреатических проферментов.

Трипсиноген представляет одноцепочечную молекулу и под действием энтеропептидазы теряет 6 аминокислот (гексапептид) на N концевом участке молекулы.(Вал-(Асп)4-Лиз) превращаясь в активную форму трипсин. Образующиеся молекулы трипсина могут катализировать активирование трипсиногена (аутокатализ), участвовать в переваривании белков и активировать другие неактивные протеазы поджелудочной железы и кишечника химотрипсина, эластазы, карбоксипептидаз А и В. Врожденная недостаточность энтеропептидазы приводит к тяжелой белковой недостаточности.

Каждая из протеаз, образующихся в кишечнике обладает специфичностью к определенным пептидным связям в белках. Продукт действия одного фермента может использоваться как субстрат для другого фермента. Специфичность в действии протеиназ обеспечивает взаимодополняющий эффект их действия на белки. Продуктами переваривания белков в желудочно-кишечном тракте является смесь из аминокислот, и олигопептидов (35% — нейтральные и основные аминокислоты, 65% аминокислот остаются в составе олигопептидов)

 

Специфичность отдельных протеиназ поджелудочной железы и кишечника.

Табл.4.

Эндопептидазы
Трипсин гидролизует пептидные связи, образованные карбоксильными группами основных аминокислот - лиз и арг.
Химотрисин гидролизует пептидные связи, образованные карбоксильными группами ароматических аминокислот (фен, тир, три).
Эластаза гидролизует пептидные связи, образованные карбоксильными группами маленьких алифатичеких аминокислот (гли, ала, сер).
Экзопептидазы
Карбоксипептидаза А отщепляет нейтральные аминокислоты от С конца пептидов.
Карбоксипептидаза В. отщепляет основные аминокислоты от С конца пептидов

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)