АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Растровая (сканирующая) электронная микроскопия

Читайте также:
  1. Вопрос. Локальные и глобальные сети ЭВМ. Основы компьютерных коммуникаций. Общие сведения об internet. Основные службы internet. Электронная почта.
  2. Микроскопия листа с поверхности
  3. Некоторые направления информатизации муниципального управления с точки зрения реализации городской целевой программы «Электронная Москва»
  4. Подготовка и микроскопия живых препаратов. Препарат «раздавленная капля»
  5. Просвечивающая электронная микроскопия
  6. Световая микроскопия
  7. Тема «Компьютерная сеть. Электронная почта. Поисковые системы»
  8. Ультрафиолетовая микроскопия
  9. Электронная библиотека СПБУУЭ. - http://library.ime.ru
  10. Электронная почта
  11. Электронная почта.

Электронная микроскопия

Электронная микроскопия - совокупность методов исследования с помощью электронных микроскопов (ЭМ) микроструктуры и их локального состава. Эта задача в полной мере решается на современных приборах, когда просвечивающий электронный микроскоп (ПЭМ) совмещают с растровым (РЭМ). Электронный микроскоп - прибор для наблюдения многократно увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных в условиях высокого вакуума. Это определение относится и к ПЭМ, и к РЭМ. Для наблюдения используется электронная оптика - совокупность приборов и методов исследования, основанная на формировании потоков электронов и управлении ими с помощью электрических и магнитных полей (электронная линза впервые была создана в 1926 г.).

 

Растровая (сканирующая) электронная микроскопия

Этот метод основан на зондировании поверхности изучаемого образца электронным зондом. Сущность метода состоит в том, что поверхность массивного образца облучается тонко сфокусированным (диаметром до 5-10 нм) пучком электронов - так называемым электронным зондом. Пучок электронов совершает возвратно-поступательное движение по линии или развертывается в растр - совокупность близко расположенных параллельных линий, вдоль которых пучок электронов обегает выбранный для исследования участок поверхности.

Рисунок 31 - Эффекты, возникающие при взаимодействии пучка электронов с веществом: 1 - электронный пучок; 2 - образец; 3 - отраженные электроны; 4 - вторичные электроны; 5 - ток поглощенных электронов; 6 - катодолюминесценция; 7 - рентгеновское излучение; 8 - Оже-электроны; 9 - наведенный ток; 10 - прошедшие электроны.

В каждой точке облучаемой поверхности происходит взаимодействие электронов пучка 1 с веществом, в результате чего возникает ряд эффектов: образуются отраженные электроны 3, вторичные электроны 4, рентгеновское 7 и другие излучения (см. рис. 1, где 1 - электронный пучок; 2 - образец; 3 - отраженные электроны; 4 - вторичные электроны; 5 - ток поглощенных электронов; 6 - катодолюмине-сценция;7 - рентгеновское излучение; 8 - Оже-электроны; 9 - наведенный ток; 10 - прошедшие электроны). Эти эффекты служат основой для получения разнообразной информации: о рельефе поверхности образца 2, химическом составе и кристаллографической ориентации объемов, прилегающих к поверхности. Электроны, испускаемые веществом, различного рода излучения, улавливаются специальными датчиками и после усиления используются для управления яркостью электронно-лучевой трубки, на экране которой формируется изображение. При этом каждой точке на поверхности образца 2 соответствует определенная точка на экране электронно-лучевой трубки. Яркость каждой точки на экране определяется интенсивностью сигнала из соответствующей точки образца. Интенсивность сигналов изменяется при пробегании электронного зонда по поверхности образца. Это обеспечивает контраст в изображении разных участков поверхности на экране электронно-лучевой трубки.

Рисунок 32 - Принципиальная схема растрового электронного микроскопа (РЭМ): 1 - катод; 2 - фокусирующий электрод; 3 - анод; 4 - ограничивающая диафрагма; 5 - первая кондесорная линза; 6 - вторая конденсорная линза; 7 - отклоняющие катушки; 8 - стигматор; 9 - конечная (объективная) линза; 10 - диафрагма, ограничивающая размер пучка; 11 - детектор рентгеновского излучения; 12 - усилитель фотоумножителя; 13 - генераторы развертки; 14 - образец; 15 - детектор вторичных электронов; 16 - к отклоняющим катушкам; 17 - управление увеличением; 18 - ЭЛТ.

Принципиальная схема РЭМа представлена на рисунке 32. На ней можно выделить следующие основные системы: электроннооптическую 1-10, предназначенную для формирования электронного зонда и его сканирования (пробегания) по поверхности образца 14; систему, формирующую изображение 11-18. РЭМ снабжен вакуумной автоматизированной системой и устройствами точной механики (шлюзы, держатели образцов и пр.). Основная область применения РЭМа - анализ рельефа поверхности, в особенности изломов (фрактография). Преимущества РЭМ по сравнению с другими микроскопами здесь наиболее заметны. В связи с тем, что изображение обычно формируется с помощью вторичных электронов, зона выхода которых ограничена малой областью вокруг места падения зонда, достигается высокая разрешающая способность. Это позволяет исследовать мельчайшие детали рельефа поверхности. РЭМ обеспечивает также большую резкость в сочетании с наглядностью изображения. Это дает возможность исследовать объекты с сильно развитой поверхностью.

Подготовка образцов для исследования с помощью РЭМ не вызывает трудностей. Основное требование к образцу - соответствие его размеров размерам камеры для образцов в приборе. Необходимо также, чтобы поверхность, предназначенная для исследования, была чистой. Очистку образцов от загрязнений осуществляют с помощью различных растворителей в ультразвуковой камере в сочетании с осторожной механической очисткой.

РЭМ можно использовать для исследования структуры сплавов, характера распределения частиц по форме и размерам. В этом случае образцы для исследования готовят так же, как для наблюдения с помощью светового металлографического микроскопа.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)