АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

РАСЧЕТ ТРУБОПРОВОДОВ ПРИ НЕИЗОТЕРМИЧЕСКОМ ДВИЖЕНИИ ОДНОФАЗНОЙ ЖИДКОСТИ

Читайте также:
  1. C. порядок расчета коэффициента чувствительности «b»
  2. Cводный расчет сметной стоимости работ по бурению разведочной скважины 300-С
  3. I. Расчет термодинамических процессов, составляющих цикл
  4. II. РАСЧЕТ НОРМ НАКОПЛЕНИЯ ОТХОДОВ
  5. II. Расчет прямого цикла 1-2-3-4-5-1
  6. II. Тематический расчет часов
  7. III Расчет количеств исходных веществ, необходимых для синтеза
  8. А) Расчет на неподвижную нагрузку
  9. А. Расчетная глубина распространения облака на открытой местности
  10. Аккредитивная форма расчетов. Учет операций по открытию аккредитива.
  11. Акцептная форма расчетов с покупателями и заказчиками
  12. Алгоритм геометрического расчета передачи

 

Говоря об изотермическом движении однофазных жидкостей по трубопроводам, мы полагали, что температура, а следовательно, плотность и вязкость жидкости, остается неизменной на всем протяжении потока и в любой точке его поперечного сечения. Однако, реальные потоки жидкости или подогревают в различных печах или теплообменниках или их естественная теплота рассеивается в окружающей среде.

При движении продукции скважины от забоя к устью и далее до установок подготовки нефти происходит постепенное понижение температуры и разгазирование флюидов (нефти и воды), транспортируемых по одному трубопроводу. С понижением температуры и разгазированием флюидов увеличивается вязкость нефти (эмульсии), понижается Re и, в конечном итоге, увеличивается гидравлическое сопротивление:

t↓→ν↑→Rе ¯ →λ↑.

Падение температуры и глубокое разгазирование особенно нежелательны для высоковязких и парафинистых нефтей.

По этой причине транспортирование нефтей на месторождениях Севера должно осуществляться в газонасыщенном состоянии, чтобы снизить их вязкость, а следовательно, и потери от гидравлических сопротивлений. Последняя ступень сепарации в данном случае должна устанавливаться на центральном пункте сбора нефти или на НПЗ.

Знание закона распределения температуры флюидов по длине нефтепровода необходимо как для проектировщиков нефтесборной системы, так и для эксплуатационников: для правильной расстановки подогревателей и настройки режима их работы.

Для установления закона изменения температуры жидкости по длине трубопровода выделим на расстоянии X от начала трубопровода элементарный участок длиной dX и составим для него уравнение теплового баланса.

Потери теплоты от элементарного участка dX в единицу времени в окружающую среду составят:

(5.54)

где – поверхность охлаждения элементарного участка, м;

k - коэффициент теплопередачи от нефти в окружающую среду.

При движении жидкости через рассматриваемый участок dX она охладится на dt oC и потеряет количество теплоты, равное:

(5.55)

- так как температура жидкости по мере удаления от начала трубопровода падает.

При установившемся режиме потери теплоты жидкостью должны быть равны теплоте, отдаваемой ею в окружающую среду:

 

(5.56)

 

где k – коэффициент теплопередачи от нефти в окружающую среду, Вт/(м2 К);

t - температура жидкости на расстоянии X от начала трубопровода;

tо - температура окружающей среды;

d - внутренний диаметр трубопровода;

G - массовый расход нефти, кг/с;

CP - удельная массовая теплоемкость нефти, кДж/(кг град).

При этом tH > t > t0.

При стационарном режиме изменением k по длине трубопровода можно пренебречь.

Интегрируя уравнение (5.56) получаем формулу Шухова для расчета температуры в любой точке трубопровода:

(5.57)

Это и есть закон распределения температуры жидкости по длине трубопровода.

Температура в конечной точке трубопровода при x=l

, (5.58)

где Шу – параметр Шухова:

(5.59)

Если в трубопроводе охлаждается парафинистая нефть и выпадает парафин, то нужно учитывать скрытую теплоту кристаллизации парафина. Черникин В.И. предложил внести для этого изменения в параметр Шухова:

(5.60)

где k – скрытая теплота кристаллизации парафина, равная 226-230 кДж/кг;

ε - относительное содержание парафина, выпадающего из нефти;

T* - температура, при которой начинается выпадение парафина;

Tε - температура, для которой известно ε.

При снижении температуры и повышении вязкости нефти увеличивается работа как на преодоление внутреннего трения, так и трения между нефтью и стенкой трубы.

Лейбензон Л.С. внес поправку в формулу Шухова, учитывающую работу трения потока жидкости, превращающуюся в теплоту. С учетом поправки Лейбензона формула записывается так:

(5.61)

где i – средний гидравлический уклон.

Для нефти CP ~2,09 кДж/(кг град), для воды CP ~4,19 кДж/(кг град).

В неизотермическом трубопроводе в общем случае могут наблюдаться два режима течения: на начальном участке при сравнительно высокой температуре жидкости – турбулентный режим, а в конце- ламинарный. Температура, соответствующая переходу турбулентного режима в ламинарный, называется критической. Как определить ее?

Критическое значение вязкости, при которой турбулентный режим переходит в ламинарный, определяется исходя из значения Reкр:

(5.62)

Вязкость жидкости можно вычислить по формуле Филонова П.А.:

(5.63)

где u– коэффициент крутизны вискограммы, 1/град.

Проведем следующие преобразования уравнения (5.63) с учетом уравнения (5.62):

Отсюда:

(5.64)

где t - температура нефти, при которой требуется узнать вязкость, oC;

tx - произвольная температура, выбранная в рабочем интервале температур;

νx - кинематическая вязкость нефти при температуре tx.

Если мы не располагаем экспериментальной кривой температурной зависимости вязкости, то для аналитического определения показателя крутизны вискограммы необходимо знать вязкость нефти ν1 и ν2 при двух температурах t1 и t2. Подставляя эти данные в уравнение Филонова (5.63) и логарифмируя его, получим:

Вычитая из первого равенства второе, найдем:

(5.65)

Для ориентировочного определения вязкости нефтей в зависимости от их температуры и плотности можно пользоваться графическими зависимостями.

Очевидно, что при tKP ≥ tH в трубопроводе только ламинарный режим, а при tKP ≤ tК - режим только турбулентный. При tH >tKP >tK в трубопроводе имеют место оба режима.

Длина турбулентного участка lt определится из формулы Шухова:

(5.66)

По этой же формуле определится длина ламинарного участка, заменяя tH на tKP - в числителе и tKP на tK - в знаменателе, а также KT на KЛ.

Если в трубопроводе два режима, то температура потока в конце трубопровода:

(5.67)

Потерю напора на трение в неизотермическом трубопроводе определяют отдельно для ламинарного и турбулентного участков. Сумма - дает потерю напора для всего трубопровода:

Потеря напора на трение в неизотермических условиях определяется по формуле:

(5.68)

где – потеря напора на трение при t = tH по всей длине соответствующего участка трубопровода;

Δ - поправочный множитель, учитывающий неизотермичность потока вследствие падения температуры как по длине потока, так и радиусу трубы.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)