АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Структурная схема ПЭВМ

Читайте также:
  1. Алгоритм и блок-схема
  2. Блок-схема алгоритма цикла с параметром представлена на рисунке 5.1.
  3. Взаимосвязь природы и общества. Ноосфера - первичная структурная единица биосферы.
  4. Выбор типа и схема предочистки ВПУ
  5. Группа и её структурная организация. Группа и коллектив.
  6. ДВУХПОЛУПЕРИОДНАЯ СХЕМА ВЫПРЯМЛЕНИЯ
  7. Двухполупериодный мостовой выпрямитель (схема Греца)
  8. Загальна схема ветеринарної медицини України
  9. Как СТРУКТУРНАЯ БЕЗДНА Мироздания порождает Ведическую картину Мира.
  10. Какая структурная часть экономической географии и регионалистики не соответствует отраслевой классификации?
  11. Кинематическая схема привода
  12. Классическая схема информационной системы

Общие сведения об ПЭВМ и их классификация, Структурная схема ПЭВМ, Внешние устройства ПЭВМ, Внешние запоминающие устройства ПЭВМ, Печатающие устройства ПЭВМ, Перспективы развития ПЭВМ, Поколения вычислительных средств.

Общие сведения об ПЭВМ и их классификация.

Появление в 1975 г. в США первого серийного персонального компьютера (персональной ЭВМ — ПЭВМ) вызвало революционный переворот во всех областях человеческой деятельности.

Первые персональные компьютеры создавались в виде электронных блоков, обеспечивающих возможность конструировать различные ЭВМ из отдельных узлов. Такие наборы пользовались большим успехом у любителей - электронщиков. Однако уже в 1981 г. стали выпускаться ПЭВМ, имеющие блочно-модульную конструкцию. Эти машины, простые в эксплуатации и сравнительно дешевые, предназначались для потребителей, не обладающих знаниями в области вычислительной техники и программирования.

Широкое распространение мини-ЭВМ в начале 70-х годов определялось необходимостью приблизить компьютер к пользователю. Мини-ЭВМ устанавливались непосредственно на предприятиях и в организациях, где использование больших ЭВМ было экономически невыгодным.

ПЭВМ относится к классу микро – ЭВМ и является машиной индивидуального пользования. Это общедоступный и универсальный инструмент, многократно повышающий производительность интеллектуального труда специалистов различного профиля. ПЭВМ предназначена для автономной работы в диалоговом режиме с пользователем. Общедоступность ПЭВМ определяется сравнительно низкой стоимостью, компактностью, отсутствием специальных требований как к условиям эксплуатации, так и степени подготовленности пользователя

Основой ПЭВМ является микропроцессор (МП). Развитие техники и технологии микропроцессоров определило смену поколений ПЭВМ:

первое поколение (1975—1980 гг.)— на базе 8-разрядного МП;

второе поколение (1981—1985 гг.)— на базе 16-разрядного МП;

третье поколение (1986—1992 гг.) — на базе 32-разрядного МП;

четвертое поколение (1993. — по настоящее время) — на базе 64-разрядного МП.

Большую роль в развитии ПЭВМ сыграло появление компьютера IBM PC, произведенной корпорацией IBM (США) на базе микропроцессора Intel-8086 в 1981г. Этот персональный компьютер занял ведущее место на рынке ПЭВМ. Его основное преимущество — так называемая «открытая архитектура», благодаря которой пользователи могут расширить возможности приобретенной ПЭВМ, добавляя различные периферийные устройства и модернизируя компьютер.

В дальнейшем другие фирмы начали создавать компьютеры, совместимые с IBM PC и, таким образом, компьютер IBM PC стал как бы стандартом класса ПЭВМ. В наши дни около 85 % всех продаваемых. ПЭВМ базируется на архитектуре IBM PC.

Бытовые ПЭВМ предназначены для массового потребителя, поэтому они должны быть достаточно дешевыми, надежными и иметь, как правило, простейшую базовую конфигурацию. Бытовые ПЭВМ используются в домашних условиях для развлечений (видеоигры), для обучения и тренировки, управления бытовой техникой. Однако архитектура этих машин позволяет подключать их к каналам связи, расширять набор периферийного оборудования. При некоторой модернизации эти модели могут использоваться для индивидуальной обработки текста, решения небольших научных и инженерных задач (например, отечественная ПЭВМ «Амата»). Бытовые ПЭВМ снабжаются пакетом игр, программным обеспечением локальной сети и др. Фирмы предлагают за дополнительную плату нарастить комплектность компьютера НЖМД типа «винчестер», музыкальной картой, монитором и т.д. Модель «Амата» легко превращается в ПЭВМ общего назначения.

Персональные ЭВМ общего назначения применяются для решения задач научно-технического и экономического характера, а также для обучения и тренировки. Они размещаются на рабочих местах пользователей: на предприятиях, в учреждениях, в магазинах, на складах и т.п. Машины этого класса обладают достаточно большой емкостью оперативной памяти, имеют внешнюю память на гибких и жестких магнитных дисках, собственный дисплей. Интерфейсы позволяют подключать большое количество периферийных устройств, средства для работы в составе вычислительных сетей.

ПЭВМ общего назначения используются прежде всего пользователями-непрофессионалами. Поэтому они снабжаются развитым программным обеспечением, включающим операционные системы, трансляторы с алгоритмических языков, пакеты прикладных программ. В состав аппаратуры входят устройства для вывода как текстового, так и графического материала, принтеры с высоким качеством печати. Этот класс ПЭВМ получил наибольшее распространение на мировом рынке.

Профессиональные ПЭВМ используются в научной сфере, для решения сложных информационных и производственных задач, где требуются высокое быстродействие, эффективная передача больших массивов информации, достаточно большая емкость оперативной памяти. Пользователями профессиональных ПЭВМ, как правило, являются профессионалы-программисты, поэтому программное обеспечение должно быть достаточно богатым, гибким, включать инструментальные программные средства.

Благодаря подключению широкой номенклатуры периферийных устройств функциональные возможности ПЭВМ значительно расширяются. Они могут работать в многозадачном режиме, с алгоритмическими языками высокого уровня, в составе вычислительных сетей. По своим функциональным возможностям многопроцессорные профессиональные ПЭВМ не только приближаются, но и вполне могут конкурировать с большими ЭВМ предыдущего поколения.

В настоящее время появился новый признак классификации ЭВМ по конструктивному исполнению, связанному с микроминиатюризацией изделий. Снижение веса и уменьшение габаритов привело к выпуску компьютеров, называемых LAPTOP («наколенные» компьютеры), NOTEBOOK (компьютеры-блокноты) и HANDHELD ручной компьютер).

Структурная схема ПЭВМ.

ПЭВМ включает три основных устройства: системный блок, клавиатуру и дисплей (монитор). Однако для расширения функциональных возможностей ПЭВМ можно подключить различные дополнительные периферийные устройства, в частности: печатающие устройства (принтеры), накопители на магнитной ленте (стримеры), различные манипуляторы (мышь, джойстик, трекбол, световое перо), устройства оптического считывания изображений (сканеры), графопостроители (плоттеры) и др.

Эти устройства подсоединяются к системному блоку с помощью кабелей через специальные гнезда (разъемы), которые размещаются обычно на задней стенке системного блока.

В некоторых моделях ПЭВМ при наличии свободных гнезд дополнительные устройства вставляются непосредственно в системный блок, например, модем для обмена информацией с другими ПЭВМ через телефонную связь или стример для хранения больших массивов информации на МЛ. ПЭВМ, как правило, имеет модульную структуру (рис. 1). Все модули связаны с системной магистралью (шиной).

Рис. 1. Структурная схема ПЭВМ с периферийными устройствами:

АЛУ – арифметико – логическое устройство; УУ – устройство управления; ПП – постоянная память; ОП – оперативная память; ВУ – внешнее устройство; НГМД – накопитель на гибких магнитных дисках; НЖМД - накопитель на жестких магнитных дисках; НМЛ – накопитель на магнитной ленте; ПУ – печатающее устройство.

Системная магистраль. Она выполняется в виде совокупности |шин (кабелей), используемых для передачи данных, адресов и управляющих сигналов. Количество линий в адресно-информационной шине определяется разрядностью кодов адреса и данных, а количество линий в шине управления — числом управляющих сигналов, используемых в ПЭВМ.

Системный блок. Являясь главным в ПЭВМ, этот блок включает в свой состав центральный микропроцессор, сопроцессор, модули оперативной и постоянной памяти, контроллеры, накопители на магнитных дисках и другие функциональные модули. Набор модулей определяется типом ПЭВМ, Пользователи по своему желанию могут изменять конфигурацию ПЭВМ, подключая дополнительные периферийные устройства.

В системный блок может быть встроено звуковое устройство, с помощью которого пользователю удобно следить за работой машины, вовремя обращать внимание на возникшие сбои в отдельных устройствах или на возникновение необычной ситуации при решении задачи на ПЭВМ. Со звуковым устройством часто связан таймер, позволяющий вести отсчет времени работы машины, фиксировать календарное время, указывать на окончание заданного промежутка времени при выполнении той или иной задачи.

Контроллеры (К). Эти устройства служат для управления внешними устройствами (ВУ). Каждому ВУ соответствует свой контроллер. Электронные модули-контроллеры реализуются на отдельных печатных платах, вставляемых внутрь системного блока. Такие платы часто называют адаптерами ВУ (от адаптировать — приспосабливать). После получения команды от микропроцессора контроллер функционирует автономно, освобождая микропроцессор от выполнения специфических функций, требуемых для того или другого конкретного ВУ.

Контроллер содержит регистры двух типов — регистр состояния (управления) и регистр данных. Эти регистры часто называют портами ввода-вывода. За каждым портом закреплен определенный номер— адрес порта. Через порты пользователь может управлять ВУ, используя команды ввода-вывода. Программа, выполняющая по обращению из основной выполняемой программы операции ввода-вывода для конкретного устройства или группы устройств ПЭВМ, входит в состав ядра операционной системы ПЭВМ.

Для ускорения обмена информацией между микропроцессором и внешними устройствами в ПЭВМ используется прямой доступ к памяти (ПДП)- Контроллер ПДП, получив сигнал запроса от внешнего устройства, принимает управление обменом на себя и обеспечивает обмен данными с ОП, минуя центральный микропроцессор. В это время микропроцессор продолжает без прерывания выполнять текущую программу. Прямой доступ к памяти, с одной стороны, освобождает микропроцессор от непосредственного обмена между памятью и внешними устройствами, а с другой стороны, позволяет значительно быстрее по сравнению с режимом прерываний удовлетворять запросы на обмен.

Микропроцессор. Ядром любой ПЭВМ является центральный микропроцессор, который выполняет функции обработки информации и управления работой всех блоков ПЭВМ.

Конструктивно МП, как правило, выполнен на одном кристалле (на одной СБИС). В состав МП входят:

центральное устройство управления,

арифметико-логическое устройство,

внутренняя регистровая память,

КЭШ-памягь,

схема формирования действительных адресов операндов для обращения к оперативной памяти,

схемы управления системной шиной и др.

Рассмотрим структуру и функционирование микропроцессора на примере разработанной фирмой Intel модели i486.

АЛУ выполняет логические операции, а также арифметические операции в двоичной системе счисления ив двоично-десятичном коде, причем арифметические операции над числами представленными форме с плавающей точкой, реализуются в специальном блоке. В некоторых конфигурациях с этой целью используется арифметический сопроцессор (например, 180387). Он имеет собственные регистры данных и управления, работает параллельно с центральным МП, обрабатывает данные с плавающей точкой.

Устройство управления микропроцессорного типа обеспечивает конвейерную обработку данных с помощью блока предварительной выборки (очереди команд).

Блок предварительной выборки команд и данных осуществляет заполнение очереди команд длиной 32 байта, причем выборка байтов из памяти выполняется в промежутках между магистральными циклами команд.

Производительность микропроцессора значительно повышается за счет буферизации часто используемых команд и данных во внутренней КЭШ-памяти размером (в данном случае) 8 Кбайт. При этом сокращается число обращений к внешней памяти. Внутренняя КЭШ-память имеет несколько режимов работы, что обеспечивает гибкость отладки и выполнения рабочих программ.

Сегментация памяти является средством управления пространством логических адресов. Сегментированная память представляет собой набор блоков, характеризуемых определенными атрибутами, такими, как расположение, размер, тип (стек, программа, данные), класс защиты памяти. В МП i486 каждой задаче доступно до 16384 сегментов размером до 4 Гбайт каждый. Таким образом, каждая задача может использовать до 64 Тбайт виртуальной памяти.

В состав внутренней памяти МП входят доступные программисту функциональные регистры: регистры общего назначения, указатель команд, регистр флагов и регистры сегментов.

Восемь 32-разрядных регистров общего назначения используются для хранения данных и адресов. Они обеспечивают работу с данными разрядностью 1,8, 16,32 и 64 бита и адресами размером 16 и 32 бита. Каждый из таких регистров имеет свое имя, например ЕАХ или ESP.

32-разрядный указатель команд содержит смещение при определении адреса следующей команды. 32-разрядный регистр флагов указывает признаки результата выполнения команды.

Регистры сегментов содержат значения селекторов сегментов, определяющих текущие адресуемые сегменты памяти.

Кроме вышеуказанных регистровая память МП содержит регистры процессора обработки чисел с плавающей точкой, системные и некоторые другие регистры.

Устройство управления микропроцессора обеспечивает многозадачность. Многозадачность — способ организации работы ПЭВМ, при котором в ее памяти одновременно содержатся программы и данные для выполнения нескольких задач. В составе МП i486 имеются аппаратно-программные средства, позволяющие эффективно организовать многозадачный режим, в том числе системы прерывания я защиты памяти.

Система прерываний обрабатывает запросы не прерывание как от внешних, устройств, так и от внутренних блоков МП. Поступление запроса на прерывание от внутреннего блока МП свидетельствует о возникновении исключительной ситуации например, о переполнений разрядной сетки. Внешнее прерывание может быть связано с обслуживанием запросов от периферийных устройств. Требуя своевременного обслуживания, внешнее устройство посылает запрос прерывания микропроцессору: Микропроцессор в ответ приостанавливает нормальное выполнение текущей программы и переходит на обработку этого запроса, чтобы в дальнейшем выполнить определенные действия по вводу-выводу данных. После совершения таких действий происходят, возврат к прерванной программе. МП i486 способен обрабатывать до 256 различных типов прерываний, прячем первые 32 типа отведены для внутрисистемных целей и недоступны пользователю.

Защита памяти от несанкционированного доступа в многозадачном режиме осуществляется с помощью системы привилегий, регулирующих доступ к тому иди иному сегменту памяти в зависимости от уровня его защищенности и степени важности.

Защищенность определяется уровнем привилегии, требуемым для доступа к соответствующему сегменту. Уровни привилегии задаются от 0 до 3. Наиболее защищенная область памяти — отведенная под ядро операционной системы — имеет уровень 0. При обращении программы к сегментам программ или данных в защищенном режиме происходит проверка уровня привилегии и в случае, если уровень недостаточен, происходит прерывание.

Обмен информацией между блоками МП происходит через магистраль микропроцессора, включающую 32-разрядную шипу адреса, 32 – разрядную двунаправленную шину данных и шину управления.

Шина адреса используется для передачи адресов ячеек памяти и регистров для обмена информацией с внешними устройствами.

Шина данных обеспечивает передачу информации между МП, памятью и периферийными устройствами. По этой шине возможна пересылка 32-, 16- и 8-разрядных данных. Шина двунаправленная, т.е. позволяет осуществлять пересылку данных как в прямом, так и в обратном направлении.

Шина управления предназначена для передачи управляющих сигналов — управления памятью, управления обменом данных, запросов на прерывание и т.д.

Внутренняя память ПЭВМ состоит из оперативной памяти и по­стоянной памяти (ПП).

Оперативная память (ОП) ПЭВМ. Она построена на БИС или СБИС и является энергозависимой: при отключении питания информация в ОП теряется. В оперативной памяти хранятся исполняемые машинные программы, исходные и промежуточные данные и результаты. Емкость ОП в ПЭВМ измеряется в Кбайтах и Мбайтах. Иногда адресное пространство увеличивается до нескольких Гбайт.

В ОП обычно выделяется область, называемая стеком. Обращение к стековой памяти возможно только в той ячейке, которая адресуется указателем стека. Стек удобен при организации прерываний и обращении к подпрограммам.

Постоянная память (ПП). Она является энергозависимой, используется для хранения системных программ, в частности так называемой базовой системы ввода-вывода (BIOS — Basic Input and Output System), вспомогательных программ и т.п. Программы, хранящиеся в ПП, предназначены для постоянного использования микропроцессором.


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.)