АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Устройство и принцип действия DRAM

Читайте также:
  1. I .Характер действия лекарственных веществ 25 мин.
  2. I. Выражение обязательности действия, совета
  3. I. Действия водителей на месте ДТП
  4. I. Назначение, классификация, устройство и принцип действия машины.
  5. II. Классификация С/А в зависимости от способности всасываться в кровь и длительности действия.
  6. II. Методологічні засади, підходи, принципи, критерії формування позитивної мотивації на здоровий спосіб життя у дітей та молоді
  7. II. Общие принципы исчисления размера вреда, причиненного водным объектам
  8. II. Основные принципы и правила поведения студентов ВСФ РАП.
  9. III. Описание основных целей и задач государственной программы. Ключевые принципы и механизмы реализации.
  10. IV. Срок действия, порядок заключения и изменения договора обязательного страхования
  11. V. Ориентировочная основа действия
  12. V. Принципы и технология ведения переговоров

Физически DRAM-память представляет собой набор запоминающих ячеек, которые состоят из конденсаторов и транзисторов, расположенных внутри полупроводниковых микросхем памяти. Каждая из ячеек хранит всего один бит информации. На физическом уровне ячейки объединяются в прямоугольную матрицу, горизонтальные линейки которой называются строками (ROW), а вертикальные - столбцами (Column). Прямоугольная матрица называется страницей. Массив страниц формирует банк памяти.

 

Линейки представляют собой обыкновенные проводники, на пересечении которых находится "сердце" ячейки - несложное устройство, состоящее из одного транзистора и одного конденсатора.

 

Конденсатору отводится роль непосредственного хранителя информации. Каждый конденсатор хранит один бит информации. Отсутствие заряда на обкладках соответствует логическому нулю, а его наличие - логической единице. Транзистор же играет роль "ключа", удерживающего конденсатор от разряда. В спокойном состоянии транзистор закрыт, но, стоит подать на соответствующую строку матрицы электрический сигнал, как спустя мгновение-другое (конкретное время зависит от конструктивных особенностей и качества изготовления микросхемы) он откроется, соединяя обкладку конденсатора с соответствующим ей столбцом.

При отсутствии подачи электроэнергии к памяти этого типа происходит разряд конденсаторов, и память опустошается (обнуляется). Для поддержания необходимого напряжения на обкладках конденсаторов ячеек и сохранения их содержимого, их необходимо периодически подзаряжать, прилагая к ним напряжения через коммутирующие транзисторные ключи. Такое динамическое поддержание заряда конденсатора является основополагающим принципом работы памяти типа DRAM. Конденсаторы заряжают в случае, когда в «ячейку» записывается единичный бит, и разряжают в случае, когда в «ячейку» необходимо записать нулевой бит.

Важным элементом памяти этого типа является чувствительный усилитель-компаратор (sense amp), подключенный к каждому из столбцов «прямоугольника». Он, реагируя на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, считывает всю строку целиком. Именно строка является минимальной порцией обмена с динамической памятью, поэтому обмен данными с отдельно взятой ячейкой невозможен. При этом чтение/запись отдельно взятой ячейки невозможно.

 

Действительно, открытие одной строки приводит к открытию всех, подключенных к ней транзисторов, а, следовательно, - разряду закрепленных за этими транзисторами конденсаторов.

 

Чтение ячейки деструктивно по своей природе, поскольку чувствительный усилитель разряжает конденсатор в процессе считывания его заряда. "Благодаря" этому динамическая память представляет собой память разового действия, потому во избежание потери информации считанную строку приходится тут же перезаписывать вновь. В зависимости от конструктивных особенностей эту миссию выполняет либо контроллер памяти, либо сама микросхема памяти. Практически все современные микросхемы принадлежат к последней категории.

 

Ввиду микроскопических размеров, а, следовательно, емкости конденсатора записанная на нем информация хранится крайне недолго, - буквально сотые, а то тысячные доли секунды. Причина тому - саморазряд конденсатора. Несмотря на использование высококачественных диэлектриков с огромным удельным сопротивлением, заряд стекает очень быстро, ведь количество электронов, накопленных конденсатором на обкладках, относительно невелико. Для борьбы с этим явлением памяти прибегают к ее регенерации - периодическому считыванию ячеек с последующей перезаписью. В зависимости от конструктивных особенностей "регенератор" может находиться как в контроллере, так и в самой микросхеме памяти. Сегодня же регенератор чаще всего встраивается внутрь самой микросхемы, причем перед регенерацией содержимое обновляемой строки копируется в специальный буфер, что предотвращает блокировку доступа к информации.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)