АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Гидравлический расчет трубопроводов. Классификация трубопроводов, основные расчетные зависимости. Расчет простого трубопровода

Читайте также:
  1. CASE - технология. Классификация программных средств.
  2. I. ЛИЗИНГОВЫЙ КРЕДИТ: ПОНЯТИЕ, ИСТОРИЯ РАЗВИТИЯ, ОСОБЕННОСТИ, КЛАССИФИКАЦИЯ
  3. I. ОСНОВНЫЕ ФАКТОРЫ
  4. I. Расчет параметров железнодорожного транспорта
  5. I. Типичные договоры, основные обязанности и их классификация
  6. I.2. Определение расчетной длины и расчетной нагрузки на колонну
  7. II раздел. Расчет эффективности производственно-финансовой деятельности
  8. II. Основные моменты содержания обязательства как правоотношения
  9. II. Основные направления работы с персоналом
  10. II. Основные принципы и правила служебного поведения государственных (муниципальных) служащих
  11. II. ОСНОВНЫЕ ЦЕЛИ И ЗАДАЧИ КОНЦЕПЦИИ
  12. II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели

Классификация: простой и сложный. Простые делятся на послед-но, параллельно соеденённые и разветвлённые.

Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением: простым трубопроводом является трубопровод, собранный из труб одинакового диаметра и качест­ва его внутренних стенок, в котором движется транзитный поток жидкости, и на котором нет местных гидравлических сопротивлений. Жидкость по трубопроводу движется благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может создаваться несколькими способами: работой насоса, разностью уровней жидкости, давлением газа. Рассмотрим простой трубопровод постоянного сечения, который расположен произвольно в пространстве (рис. 6.1), имеет общую длину l и диаметр d, а также содержит ряд местных сопротивлений (вентиль, фильтр и обратный клапан). В начальном сечении трубопровода 1-1 геометрическая высота равна z1 и избыточное давление Р1, а в конечном сечении 2-2 - соответственно z2 и Р2. Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна ν.

Запишем уравнение Бернулли для сечений 1-1 и 2-2. Поскольку скорость в обоих сечениях одинакова и α1 = α2, то скоростной напо можно не учитывать. При этом получим

или

Пьезометрическую высоту, стоящую в левой части уравнения, назовем потребным напором Нпотр. Если же эта пьезометрическая высота задана, то ее называют располагаемым напором Нрасп. Такой напор складывается из геометрической высоты Hпотр, на которую поднимается жидкость, пьезометрической высоты в конце трубопровода и суммы всех потерь напора в трубопроводе.

Назовем сумму первых двух слагаемых статическим напором, который представим как некоторую эквивалентную геометрическую высоту

а последнее слагаемое Σ h - как степенную функцию расхода Σ h = KQm

тогда Hпотр = Hст + KQm где K - величина, называемая сопротивлением трубопровода;
Q - расход жидкости; m - показатель степени, который имеет разные значения в зависимости от режима течения.

Для ламинарного течения при замене местных сопротивлений эквивалентными длинами сопротивление трубопровода равно где lрасч = l + lэкв.

Численные значения эквивалентных длин lэкв для различных местных сопротивлений обычно находят опытным путем. Для турбулентного течения, используя формулу Вейсбаха-Дарси, и выражая в ней скорость через расход, получаем

По этим формулам можно построить кривую потребного напора в зависимости от расхода. Чем больше расход Q, который необходимо обеспечить в трубопроводе, тем больше требуется потребный напор Нпотр. При ламинарном течении эта кривая изображается прямой линией (рис.6.2, а), при турбулентном - параболой с показателем степени равном двум (рис.6.2, б).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)