АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Принципы работы мозга

Читайте также:
  1. B. Нарушение эритропоэза, связанное с угнетением деятельности костного мозга
  2. I период работы (сентябрь, октябрь, ноябрь)
  3. I. Задания для самостоятельной работы
  4. I. Задания для самостоятельной работы
  5. I. Задания для самостоятельной работы
  6. I. Задания для самостоятельной работы
  7. I. СУЩНОСТЬ, ЦЕЛЬ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ
  8. II. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ (в часах)
  9. II. Основные направления работы с персоналом
  10. II. Основные принципы и правила служебного поведения государственных (муниципальных) служащих
  11. II. Принципы организации и деятельности прокуратуры Российской Федерации
  12. III Организация кадровой работы

Нервная система и мозг человека состоят из нейронов, соединенных между собой нервными волокнами. Нервные волокна способны передавать электрические импульсы между нейронами. Все процессы передачи раздражений от нашей кожи, ушей и глаз к мозгу, процессы мышления и управления действиями - все это реализовано в живом организме как передача электрических импульсов между нейронами. Рассмотрим строение биологического нейрона (рис.5).


Рисунок 5 – Строение биологического нейрона

Тело клетки содержит множество ветвящихся отростков двух типов. Отростки первого типа, называемые дендритами, служат в качестве входных каналов нервных импульсов от других нейронов. Эти импульсы поступают в сому (тело клетки), вызывая ее специфическое возбуждение, которое затем распространяется по выводному отростку второго типа – аксону [21]. Тело нейрона, заполненное проводящим ионным раствором, окружено мембраной, обладающей низкой проводимостью. Между внутренней поверхностью мембраны аксона и внешней средой поддерживается разность электрических потенциалов. Под воздействием стимулирующих сигналов от других нейронов мембрана аксона динамически изменяет свою проводимость. Импульс деполяризации клеточной мембраны, называемый спайком, распространяется вдоль аксона практически без затухания. Возбуждение нейрона в виде спайка передается другим нейронам, которые таким образом объединены в проводящую нервные импульсы сеть. Участки мембраны на аксоне, где размещаются области контакта аксона данного нейрона с дендритами других нейронов, называются синапсами. В области синапса, имеющего сложное строение, происходит обмен информацией о возбуждении между нейронами. Механизмы синаптической передачи достаточно сложны и разнообразны. Они могут иметь химическую и электрическую природу. В химическом синапсе в передаче импульсов участвуют специфические химические вещества – нейромедиаторы, вызывающие изменения проницаемости локального участка мембраны. В зависимости от типа вырабатываемого медиатора синапс может обладать возбуждающим или тормозящим действием. Обычно на всех отростках одного нейрона вырабатывается один и тот же медиатор, и поэтому нейрон в целом функционально является тормозящим или возбуждающим.

Можно считать, что при прохождении синапса сила импульса меняется в определенное число раз, которое мы будем называть весом синапса. Импульсы, поступившие к нейрону одновременно по нескольким дендритам, суммируются. Если суммарный импульс превышает некоторый порог, нейрон возбуждается, формирует собственный импульс и передает его далее по аксону. Важно отметить, что веса синапсов могут изменяться со временем, а значит, меняется и поведение соответствующего нейрона.

Взаимодействующие между собой посредством передачи через отростки возбуждений нейроны формируют нейронные сети. Выделяют несколько основных типов нейронных сетей, отличающихся структурой и назначением.

Первый тип составляют иерархические сети. Информация в таких сетях передается в процессе последовательного перехода от одного уровня иерархии к другому.

Нейроны образуют два характерных типа соединений: конвергентные, когда большое число нейронов одного уровня контактирует с меньшим числом нейронов следующего уровня, и дивергентные, когда контакты устанавливаются со все большим числом клеток последующих слоев иерархии. Сочетание конвергентных и дивергентных соединений обеспечивает многократное дублирование информационных путей, что является решающим фактором надежности нейронных сетей.

Ко второму типу нейронных сетей относятся локальные сети, формируемые нейронами с ограниченными сферами влияния. Нейроны локальных сетей производят переработку информации в пределах одного уровня иерархии. При этом функционально локальная сеть представляет собой относительно изолированную тормозящую или возбуждающую структуру.

Важную роль играют дивергентные сети с одним входом. Командный нейрон, находящийся в основании такой сети, может оказывать влияние сразу на множество нейронов и выступать согласующим элементом в сочетании нейросетевых систем всех типов.

Структура основных типов нейронных сетей генетически предопределена. Однако нейронные структуры демонстрируют свойства изменчивости, обусловливающие их адаптацию к конкретным условиям функционирования. Изменчивость на клеточном уровне проявляется в пластичности синаптических контактов. Характер метаболической активности нейрона и свойства проницаемости синаптической мембраны могут меняться в ответ на длительную активизацию или торможение нейрона. Синаптический контакт «тренируется» в ответ на условия функционирования. Изменчивость на уровне сети связана с тем, что нейрон демонстрирует способность к формированию новых отростков и новых синаптических контактов. Специфическая изменчивость нейронных сетей и отдельных нейронов лежит в основе их способности к обучению – адаптации к условиям функционирования – при неизменности в целом морфологической структуры.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)