АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Гетероскедастичность, способы обнаружения и исправления. Метод взвешенных наименьших квадратов

Читайте также:
  1. ABC-аналіз як метод оптимізації абсолютної величини затрат підприємства
  2. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  3. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  4. Exercises for Lesson 3. Requests and offers / Просьбы и предложения. Способы выражения, лексика, примеры.
  5. I. ПРЕДМЕТ И МЕТОД
  6. I.ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ
  7. II. Документация как элемент метода бухгалтерского учета
  8. II. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ
  9. II. Методична робота.
  10. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  11. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  12. II. Способы изменения обязательств (цессия, суброгация, делегация)

Гетероскедастичность — понятие, используемое в эконометрике, означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна понятию гомоскедастичность, которое означает однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.

Наличие гетероскедастичности случайных ошибок приводит к неэффективности оценок, полученных с помощью метода наименьших квадратов. Кроме того, в этом случае оказывается смещённой и несостоятельной классическая оценка ковариационной матрицы МНК(Метод наименьших квадратов)-оценок параметров. Следовательно статистические выводы о качестве полученных оценок могут быть неадекватными. В связи с этим тестирование моделей на гетероскедастичность является одной из необходимых процедур при построении регрессионных моделей.

Если дисперсия остатков изменяется для каждого наблюдения или группы наблюдений, т.е. , где, в общем случае, - неизвестный параметр, а S- известная симметричная положительно определенная матрица, то такое явление называется гетероскедастичностью. Если же , то имеем гомоскедастичность.

В случае простой однофакторной модели устранить гетероскедастичность просто. Достаточно левую и правую часть модели поделить на X. Для многофакторной модели такое преобразование значительно усложняется.

Для проверки наличия гетероскедастичности используют четыре метода, в зависимости от природы исходных данных: критерий , параметрический тест Гольдфельда-Квандта, непараметрический тест Гольдфельда-Квандта, тест Глейсера. Приведем алгоритмы каждого из методов.

Критерий применяется в случае значительной совокупности исходных данных.

Шаг 1. Значения показателя Y разбиваются на k групп в соответствии с изменениями уровня величины Y (по возрастанию, например).

Шаг 2. По каждой группе данных вычисляем сумму квадратов отклонений , .

Шаг 3. Определим сумму квадратов отклонений в целом по совокупности наблюдений:

, де - количество элементов в r- й группе.

Шаг 4. Вычислим параметр , де n - количество наблюдений.

 

Шаг 5. Вычислим значение критерия , который приблизительно отвечает распределению со степенью свободы k-1, если дисперсия всех наблюдений однородна.



Таким образом, если значение не меньше табличного значения при выбранном уровне доверия и степени свободы k-1, то принимается гипотеза о наличии гетероскедастичности.

 

Параметрический тест Гольдфельда-Квандта применяется, если количество наблюдений невелико и сделано предположение о том, что дисперсия остатков возрастает пропорционально квадрату одной из независимых переменных, т.е. .

Шаг 1. Упорядочить наблюдения в соответствии с величиной элементов вектора Xk, для которого предположительно выполняется вышеприведенное равенство.

Шаг 2. Исходя из соотношения , предложенного авторами метода, где n - количество элементов Xk, выбросить c наблюдений, которые находятся в средине вектора.

Шаг 3. Согласно МНК построить две эконометрические модели по двум полученным совокупностям наблюдений размером n-c/2, естественно при условии, что n-c/2>m, где m - количество независимых факторов, присутствующих в модели.

Шаг 4. Найти сумму квадратов остатков для первой и второй моделей: и .

Шаг 5. Вычислить значение критерия , который соответствует F- критерию со степенями свободы.

Таким образом, если , то гипотеза об отсутствии гетероскедастичности принимается.

Метод наименьших квадратов (МНК) — один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Метод основан на минимизации суммы квадратов остатков регрессии. Взвешенный МНК. В случае диагональной весовой матрицы (а значит и ковариационной матрицы случайных ошибок) имеем так называемый взвешенный МНК. В данном случае минимизируется взвешенная сумма квадратов остатков модели, то есть каждое наблюдение получает «вес», обратно пропорциональный дисперсии случайной ошибки в данном наблюдении: . Фактически данные преобразуются взвешиванием наблюдений (делением на величину, пропорциональную предполагаемому стандартному отклонению случайных ошибок), а к взвешенным данным применяется обычный МНК.

‡агрузка...

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |


При использовании материала, поставите ссылку на Студалл.Орг (0.014 сек.)