АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

METALWORKING PROCESSES

Читайте также:
  1. ALL-YEAR AIR CONDITIONING, VENTILATION, GAS SUPPLY
  2. Analysis of the current antiinflation policy in the Republic of Kazakhstan
  3. And Follow-Up Investigation in Criminal Cases
  4. Answer the questions
  5. Architecture: its forms and functions
  6. Automation in engineering
  7. B). Open the brackets. c). Put questions to the underlined words.
  8. B. RUMEN INDIGESTION
  9. BRAIN DRAIN: A NATURAL PHENOMENON?
  10. Concept of formation of uniform economic space
  11. Concept of justice
  12. Controller Proficiency requirements

 

Metals are important in industry because they can be easily deformed into useful shapes. A lot of metalworking processes have been developed for certain applications. They can be divided into five broad groups: rolling, extrusion, drawing, forging, sheet-metal forming.

During the first four processes metal is subjected to large amount of strain (deformation). But if deformation goes at a high temperature, the metal will recrystallize – that is, new strain-free grains will grow instead of deformed grains. For this reason metals are usually rolled, extruded, drawn, or forged above their recrystallization temperature. This is called hot working. Under these conditions there is no limit to the compressive plastic strain to which the metal can be subjected. Other processes are performed below the recrystallization temperature. These are called cold working. Cold working hardens metal and makes the part stronger. However, there is a limit to the strain before a cold part cracks.

Rolling is the most common metalworking process. More than 90 percent of the aluminum, steel and copper produced are rolled at least once in the course of production. The most common rolled product is sheet. Rolling can be done either hot or cold. If the rolling is finished cold, the surface will be smoother and the product stronger.

Extrusion is pushing the billet to flow through the orifice of a die. Products may have either a simple or a complex cross section. Aluminum window frames are the examples of complex extrusion. Tubes or other hollow parts can also be extruded. The initial piece is a thick-walled tube, and the extruded part is shaped between a die on the outside of tube and a mandrel held on the inside. In impact extrusion (also called back-extrusion) the workpiece is placed in the bottom of a hole and a loosely fitting ram is pushed against it. The ram forces the metal to flow back around it, with the gap between the ram and the die determining the wall thickness. The example of this process is the manufacturing of aluminum beer cans.

Drawing consists of pulling metal through a die. One type is wire drawing. The diameter reduction that can be achieved in one die is limited, but several dies in series can be used to get the desired reduction.

Forging is the shaping of a piece of metal by pushing with open or close dies. It is usually done hot in order to reduce the required force and increase the metal’s plasticity.

Open-die forging is usually done by hammering a part between two flat faces. It is used to make parts that are too big to be formed in a closed die or in cases where only a few parts are to be made. The earliest forging machines lifted a large hammer that was then dropped on the workpiece, but now air or steam hammers are used, since they allow greater control over the force and the rate of forming. The part is shaped by moving or turning it between blows.

Closed-die forging is the shaping of hot metal within the walls of two dies that come together to enclose the workpiece on all sides.

Sheet metal forming is widely used when parts of certain shape and size are needed. It includes forging, bending and shearing. One characteristic of sheet metal forming is that the thickness of the sheet changes little in processing. The metal is stretched just beyond its yield point (2 to 4 percent strain) in order to retain the new shape. Bending can be done by pressing between two dies. Shearing is a cutting operation similar to that used for cloth. Each of these processes may be used alone, but often all three are used on one part. For example, to make the roof of an automobile from a flat sheet, the edges are gripped and the pieces pulled in tension over a lower die. Next an upper die is pressed over the top, finishing the forming operation, and finally the edges are sheared off to give the final dimensions.

Heat treatment

Metals can be heat treated to alter the properties of strength, ductility, toughness, hardness or resistance to corrosion. Common heat treatment processes include annealing, normalization, quenching and tempering.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)