АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Ключові терміни

Читайте также:
  1. Вкажіть середні терміни відновлення працездатності.
  2. Електроустановки житлових, громадянських адміністративних та побутових будинків. Терміни та визначення.
  3. Етика ділових взаємин як галузь прикладної етики та її ключові принципи
  4. Загальна симметрична система секретного зв’язку за К. Шенноном. Основні терміни та визначення криптології.
  5. Ключові поняття: громадянство, конституційне право, законодавство, законотворчість, правова база.
  6. Ключові проблеми людства
  7. Ключові системи потокових шифрів. Життєвий цикл ключів.
  8. Опорні поняття та терміни
  9. Орієнтовні середні терміни іммобілізації, реабілітації і непрацездатності при різноманітних пошкодженнях
  10. Основні поняття і страхові терміни.
  11. Основні ПОНЯТТЯ ТА терміни

Тема 3

Механічні методи підготовки та переробки відходів

 

 

Ключові терміни

 

 

Большинство технологий утилизации отходов включает стадию их предварительной подготовки (рис. 1).

 

 

Рис. 1. Методы подготовки и переработки твердых отходов (одна из возможных классификаций)

 

Значительную роль на стадии подготовки отходов к дальнейшей переработке выполняют механические методы обработки.

К механическим методам относят:

- разделение отходов на фракции с последующей их переработкой различными методами (классификация, обогащение);

- измельчение отходов;

- укрупнение размеров частиц отходов;

- смешение.

 

 

Дробление.

Интенсивность и эффективность большинства химических диффузионных и биохимических процессов возрастает с уменьшением размеров кусков (зерен) перерабатываемых материалов. В этой связи собственно технологическим операциям переработки твердых отходов обычно предшествуют операции уменьшения размеров их кусков, имеющие наряду с операциями их классификации и сортировки важное самостоятельное значение в технологии рекуперации твердых отходов.

 

Метод дробления используют при необходимости получения из кусковых отходов фракций крупностью более 1 мм.

Дробление широко используют при переработке отходов вскрыши при открытых разработках полезных ископаемых, отвальных шлаков металлургических предприятий, вышедших из употребления резиновых технических изделий, отвалов галита и фосфогипса, отходов древесины, некоторых пластмасс, строительных и многих других материалов. В качестве основных технологических показателей дробления рассматривают степень и энергоемкость дробления.

Степень дробления i выражает отношение размеров кусков подлежащего дроблению и кусков раз-

дробленного материала:

 

 

 

 

 

Для дробления большинства видов твердых отходов используют щековые, конусные, валковые и роторные дробилки различных типов. Для разделки очень крупных агломератов отходов применяют копровые механизмы, механические ножницы, дисковые пилы, ленточнопильные станки и некоторые другие механизмы и приемы (например, взрыв). Выбор типа дробилки производят с учетом прочности, упругости и крупности подлежащего переработке материала, а также необходимых размеров кусков (зерен) продукта и требуемой производительности.

Технология дробления может быть организована с использованием либо открытых циклов работы дробилок, когда перерабатываемый материал проходит через дробилку только один раз, либо замкнутых циклов с грохотом, надрешетный продукт которого возвращают в дробилку.

 

Измельчение (Помол). Помол используют при необходимости получения из кусковых отходов зерновых и мелкодисперсных фракций крупностью менее 5 мм. Помол широко распространен в технологии рекуперации твердых отходов при переработке отвалов вскрышных и попутно извлекаемых пород открытых и шахтных разработок полезных ископаемых, вышедших из строя строительных конструкций и изделий, некоторых видов смешанного лома изделий из черных и цветных металлов, топливных и металлургических шлаков, отходов углеобогащения, некоторых производственных шламов и отходных пластмасс, пиритных огарков, фосфогипса и ряда других отходов.

Наиболее распространенными агрегатами грубого и тонкого помола, используемыми при переработке твердые отходов, являются стержневые, шаровые и ножевые мельницы, хотя в отдельных случаях применяют и другие механизмы (дезинтеграторы, дисковые и кольцевые мельницы, бегуны, т.п.). Измельчение некоторых типов отходных пластмасс и резиновых технических изделий проводят при низких температурах (криогенное измельчение).

Мелющими телами в стержневых и шаровых мельницах являются размещаемые в их корпусах стальные стержни и стальные или чугунные шары. В мельницах ножевого типа измельчение идет в узком (0,1—0,5 мм) зазоре между закрепленными внутри статора неподвижными ножами и ножами, фиксированными на вращающемся роторе.

Барабанные стержневые и шаровые мельницы используют как для сухого, так и для мокрого помола. Тип и размеры этих мельниц характеризуют приемом эвакуации продукта (разгрузка через решетку или сито и полую цапфу либо центральная разгрузка через полую цапфу), внутренним диаметром D барабана без футеровки и рабочей длиной L. Различают короткие (L<D) и длинные (L>D) мельницы.

 

Стержневые мельницы обычно применяют для грубого измельчения отходов (содержание класса —0,074 мм в продукте достигает 25—30%) в открытом или замкнутом цикле с классификатором. По сравнению с шаровыми мельницами они обеспечивают более равномерный по крупности продукт при равной крупности измельченного материала и меньшее количество шламов. Шаровые мельницы также используют в открытом и замкнутом цикле с классификаторами, причем мельницы с решеткой применяют, в основном, для сравнительно крупного измельчения (50—60% класса — 0,074 мм в продукте), а мельницы с центральной разгрузкой чаще применяют для тонкого и особо тонкого измельчения.

Мелющие тела — стержни диаметром 25—100 мм и шары диаметром 30—125 мм — изготовляют из высокоуглеродистой стали, длина стержней обычно составляет 1,2—1,6 диаметра мельницы.

Классификация и сортировка. Эти процессы используют для разделения твердых отходов на фракции по крупности. Они; включают методы грохочения (рассева) кусков (зерен) перерабатываемого материала и их разделение под действием гравитационно–инерционных и гравитационно–центробежных сил. Эти; методы широко применяют в качестве самостоятельных и вспомогательных при непосредственной утилизации и переработке подавляющего большинства твердых отходов. В тех случаях, когда классификация имеет самостоятельное значение, т.е. преследует цель получения той или иной фракции материала в качестве готового продукта, ее часто называют сортировкой. Грохочение представляет собой процесс разделения на классы по крупности различных по размерам кусков (зерен) материала при его перемещении на ячеистых поверхностях. В качестве последних используют колосниковые решетки, штампованные решета, проволочные сетки и щелевидные сита, выполненные из различных металлов, резины, полимерных материалов и характеризующиеся ячейками (отверстиями) различных форм и размеров.

 

При грохочении используют неподвижные колосниковые, валковые, барабанные вращающиеся, дуговые, ударные, плоские качающиеся, полувибрационные (гирационные), вибрационные с прямолинейными вибрациями (резонансные, самобалансные, с самосинхронизирующимися вибраторами) и с круговыми или эллиптическими вибрациями (инерционные с дебалансным вибратором, самоцентрирующиеся, электровибрационные) грохоты. При грохочении комкующихся материалов некоторые типы этих механизмов иногда снабжают дополнительными устройствами, обеспечивающими эффективное проведение соответствующих операций.

 

 

Технологически при выделении более двух классов перерабатываемого материала грохочение может быть оформлено в виде различных вариантов (рис. III-4), каждый из которых имеет очевидные достоинства и недостатки, касающиеся интенсивности износа ячеистых поверхностей, удобства их ремонта или замены и наблюдения за их состоянием, эффективности процесса и компактности установки.

Среди используемых для разделения твердых материалов в виде пульп классификаторов грубой (чашевые, реечные, спиральные) и тонкой (гидроциклоны, отстойные центрифуги, конусы, пирамидальные отстойники и др.) классификации наиболее распространены гидроциклоны и спиральные классификаторы с непогруженной и погруженной спиралями. Первые из них используют для получения грубых сливов крупностью от 0,2 до 0,5 мм (иногда до 1 мм), вторые — для получения тонких сливов (80—90% класса — 0,074 мм). Оба типа характеризуют диаметром спирали и длиной заключающего ее корыта.

 

Окускование. Наряду с перечисленными выше методами уменьшения размеров кусковых материалов и их разделения на классы крупности в практике рекуперационной технологии твердых отходов большое распространение имеют методы, связанные с решением задач укрупнения мелкодисперсных частиц, имеющие как самостоятельное, так и вспомогательное значение и объединяющие различные приемы гранулирования, таблетирования, брикетирования и высокотемпературной агломерации. Их используют при переработке в строительные материалы ряда компонентов отвальных пород добычи многих полезных ископаемых, хвостов обогащения углей и золы — уноса ТЭС, в процессах утилизации фосфогипса в сельском хозяйстве и цементной промышленности, при подготовке к переплаву мелкокусковых и дисперсных отходов черных и цветных металлов, в процессах утилизации пластмасс, саж, пылей и древесной мелочи, при обработке шлаковых расплавов в металлургических производствах и электротермофосфорном производстве и во многих других процессах утилизации и переработки отходов.

 

Гранулирование. Методы гранулирования охватывают большую группу процессов формирования агрегатов обычно шарообразной или (реже) цилиндрической формы из порошков, паст, расплавов или растворов перерабатываемых материалов. Эти процессы основаны на различных приемах обработки материалов.

Гранулирование порошкообразных материалов окатыванием наиболее часто проводят в ротационных (барабанных, тарельчатых, центробежных, лопастных) и вибрационных грануляторах различных конструкций. Производительность этих аппаратов и характеристики получаемых гранулятов зависят от свойств исходных материалов, а также от технологических (расхода порошков и связующих, соотношения ретура — затравки и порошка, температурного режима) и конструктивных (геометрических размеров аппаратов, режима их работы: частоты вращения, коэффициента заполнения, угла наклона) факторов.

Получившие большое распространение на практике барабанные грануляторы часто снабжают различными устройствами для интенсификации процессов, предотвращения адгезии липких порошков на рабочих поверхностях, сортировки гранул по размерам. Они характеризуются большой производительностью (до 70 т/ч, иногда выше), относительной простотой конструкции, надежностью в работе и сравнительно невысокими удельными энергозатратами. Однако барабанные грануляторы не обеспечивают возможности получения гранулята узкого фракционного состава, контроля и управления соответствующими процессами.

Для получения гранулята, близкого по составу к монодисперсному, используют тарельчатые (дисковые) грануляторы окатывания, обеспечивающие возможность достаточно легкого управления процессом.

Существует много конструкций тарельчатых грануляторов, различающихся размерами, наличием или отсутствием, а также формой и расположением отдельных конструктивных элементов. Обычно применяют тарели (чаши, диски) диаметром 1—6 м, с высотой борта до 0,6 м.

Тарельчатые грануляторы экономичнее барабанных, они более компактны и требуют меньших капитальных вложений. Их недостатком являются высокая чувствительность к содержанию жидкой фазы в обрабатываемом материале и, как следствие, узкие пределы рабочих режимов. На практике используют грануляторы производительностью до 125 т/ч. Гранулирование порошков прессованием характеризуется промежуточной стадией упругопластического сжатия (пластикации) их частиц, происходящего под действием давления и нагрева (иногда при перемешивании) с образованием коагуляционной структуры, способной к быстрому переходу в кристаллизационную. Давление начала процесса прессового гранулирования определяется пределом текучести наименее прочного компонента перерабатываемого порошка. Прессовое гранулирование проводят в валковых и таблеточных машинах различной конструкции, червячных и ленточных прессах, дисковых экструдерах и некоторых других механизмах с получением агломератов различной формы и размеров.

Валковые (вальцовые) грануляторы снабжают прессующими элементами с рабочей поверхностью различного профиля, что позволяет получать спрессованный материал в виде отдельных кусков (обычно с поперечником до 30 мм), прутков, плиток, полос. Эти механизмы часто совмещают с дробилками (обычно также валкового типа), обеспечивающими получение из спрессованных полупродуктов гранул заданных размеров.

В технологии производства из промышленных отходов (или их компонентов) некоторых адсорбентов, катализаторов, витаминных, лечебных и ряда других препаратов и изделий порошковые материалы гранулируют с использованием таблеточных машин различных типов, принцип действия большинства которых основан на прессовании дозируемых в матричные каналы порошков пуансонами. Приготовляемые таблетки характеризуются разнообразной формой (цилиндры, сферы, полусферы, диски, кольца и т.п.) с поперечником 6—12 мм. Производительность наиболее распространенных таблеточных машин составляет от 3 до 96 тыс. таблеток в 1 ч.

 

 

Принципы прессового гранулирования порошков и паст реализуют в червячных прессах

(экструдерах) различной конструкции, рабочими элементами которых являются червяки (шнеки) или валки, пластицирующие перерабатываемый материал и продавливающие его через перфорированную решетку (фильерную головку), по выходе из которой сформованные жгуты либо ломаются под действием собственной тяжести, либо их режут (рубят) ножом на соответствующие мерные длины до или после охлаждения.

Отдельную группу грануляторов представляют аппараты гранулирования порошков в дисперсных потоках. Процесс в них основан на столкновениях частиц порошка или порошка и жидкой фазы в турбулизованном потоке циркулирующего в аппарате или проходящего через него воздуха или газа. Турбулентный контакт частиц гранулируемых материалов в потоке сплошной фазы может обеспечиваться лишь последним приемом (струйные грануляторы, грануляторы кипящего слоя) либо посредством воздействия на частицы вибрационных (грануляторы виброкипящего слоя) или других механических возмущений. К этой группе процессов гранулирования могут быть отнесены также различные процессы распылительной сушки суспензий и растворов.

Гранулирование расплавов индивидуальных солей весьма ограничено в практике рекуперации твердых отходов. Гранулирование силикатных расплавов, напротив, широко используется при переработке шлаков текущего выхода в черной и (ограниченно) цветной металлургии, электротермического производства фосфора.

Технологические схемы грануляционных установок различаются в основном отсутствием или использованием ретурных потоков. Кратность последних (отношение массы возврата к массе выводимого готового продукта) может меняться в пределах 0,5—15 и определяется в основном влагосодержанием гранулируемых материалов и выходом мелких фракций. Кратность

циркуляции существенно влияет на экономику процесса гранулирования. Некоторые типовые схемы гранулирования представлены на рис. III-5.

Брикетирование. Методы брикетирования находят широкое применение в практике утилизации твердых отходов в качестве подготовительных (с целью придания отходам компактности, обеспечивающей лучшие условия транспортирования, хранения, а часто и саму возможность переработки) и самостоятельных (изготовление товарных продуктов) операций.

Брикетирование дисперсных материалов проводят без связующего при давлениях прессования, превышающих 80 МПа и с добавками связующих при давлениях, обычно ограниченных 15—25 МПа. На процесс брикетирования дисперсных материалов существенное влияние оказывают состав, влажность и крупность материала, температура, удельное давление и продолжительность прессования. Необходимое удельное давление прессования обычно находится в обратной зависимости от влажности материала. Перед брикетированием материал обычно подвергают грохочению (классификации), дроблению (при необходимости), сушке, охлаждению и другим подготовительным операциям.

В практике брикетирования твердых отходов используют различные прессовые механизмы. При брикетировании дисперсных материалов наибольшее распространение получили штемпельные (давление прессования 100—120 МПа), вальцовые и кольцевые (≈200 МПа) прессы различных конструкций.

Высокотемпературная агломерация. Этот метод используют при переработке пылей, окалины, шламов и мелочи рудного сырья в металлургических производствах, пиритных огарков и других дисперсных железосодержащих отходов. Для проведения агломерации на основе таких BMP приготовляют шихту, включающую твердое топливо (коксовая мелочь 6—7% по массе), и другие компоненты (концентрат, руда, флюсы). Усредненную и увлажненную до 5—8% шихту размещают в виде слоя определенной высоты, обеспечивающей оптимальную газопроницаемость шихты, на расположенные на решетках движущихся обжиговых тележек (палет) агломерационной машины слои возвратного агломерата крупностью 12—18 мм, предотвращающие спекание шихты с материалом тележек и прогар решеток. Воспламенение и нагрев шихты обеспечивают просасыванием через ее слой продуктов сжигания газообразного или жидкого топлива и воздуха. Процесс спекания минеральных компонентов шихты идет при горении ее твердого топлива (1100—1600°С). Агломерационные газы удаляют под разрежением 7—10 кПа.

Спеченный агломерат дробят до крупности 100—150 мм в валковых зубчатых дробилках, продукт дробления подвергают грохочению и последующему охлаждению. Просев грохочения— фракцию —8 мм, выход которой составляет 30—35%, возвращают на агломерацию.

В практике высокотемпературной агломерации распространены конвейерные машины с верхним зажиганием шихты производительностью 400—500 т/ч. Их недостатком является получение больших объемов разбавленных по загрязняющим компонентам (СО, SO2, NO х) агломерационных газов. Агломашины с нижним зажиганием позволяют в значительной степени избежать этого недостатка.

 

Смешение порошкообразных и пастообразных материалов. Этот метод широко используют в практике переработки твердых отходов для усреднения состава дисперсных отходов, приготовления на их основе многокомпонентных смесей шихтовых материалов и получения различных масс, обеспечивающих возможность переработки BMP в товарные продукты.

Существующие смесительные механизмы периодического и непрерывного действия основаны на использовании механических, гравитационных и пневматических способов взаимного перемещения частиц обрабатываемых материалов и характеризуются большим разнообразием

конструкций.

Среди смесителей периодического действия наиболее распространенными являются барабанные, бегунковые, пневматические, циркуляционные и червячно–лопастные. К кругу аппаратов непрерывного действия принадлежат барабанные, вибрационные, гравитационные, лопастные, центробежные и червячно–лопастные смесители.

Процессы смешения могут быть охарактеризованы степенью однородности (коэффициентом неоднородности), интенсивностью и эффективностью.

ОБОГАЩЕНИЕ

В практике рекуперации твердых отходов промышленности (особенно минеральных, содержащих черные и цветные металлы, фрагментов деталей вышедшей из строя радиоэлектронной аппаратуры и других изделий на основе металлов и сплавов, некоторых топливных зол, смесей пластмасс, шлаков цветной металлургии и ряда других BMP) используют различные методы обогащения перерабатываемых материалов, подразделяемые на гравитационные, магнитные, электрические, флотационные и специальные.

Гравитационные методы. Эти методы обогащения основаны на различии в скорости падения в жидкой (воздушной) среде частиц различного размера и плотности. Они объединяют обогащение отсадкой, в тяжелых суспензиях, в перемещающихся по наклонным поверхностям потоках, а также промывку.

Отсадка. Отсадка представляет собой процесс разделения минеральных зерен по плотности под действием переменных по направлению вертикальных струй воды (воздуха), проходящих через решето отсадочной машины.

 

Отсадке обычно подвергают предварительно обесшламленные широко- или узкоклассифицированные материалы оптимальной крупности 0,5—100 мм для нерудных и 0,2—40 мм для рудных материалов. При отсадке крупного материала находящийся на решете его слой толщиной в 5—10 диаметров наибольших частиц в подаваемом на переработку материале (питании) называют постелью. При отсадке мелкого материала (до 3— 5 мм) на решете укладывают искусственную постель из крупных тяжелых частиц материала, размер которых в 3—4 раза превышает размер наиболее крупных частиц питания. В процессе отсадки материал расслаивается: в нижнем слое концентрируются тяжелые частицы, в самом верхнем — легкие мелкие. Получаемые слои разгружают раздельно.

Отсадочные машины различаются способом создания пульсаций (движением диафрагмы, поршня, решета, пульсирующей подачей сжатого воздуха), типоразмерами, конструктивными особенностями, числом фракций выделяемых продуктов.

Типичная схема технологического комплекса отсадки представлена на рис. III-6.

Обогащение в тяжелых суспензиях и жидкостях. Этот процесс заключается в разделении материалов по плотности в гравитационном или центробежном поле в суспензии или жидкости, плотность которой является промежуточной между плотностями разделяемых частиц.

Тяжелые суспензии представляют собой взвешенные в воде тонкодисперсные частицы тяжелых минералов или магнитных сплавов — утяжелителей, в качестве которых используют ферросилиций, пирит, пирротин, магнетитовый и гематитовый концентраты и другие материалы крупностью до 0,16 мм. В качестве тяжелых жидкостей используют растворы хлоридов кальция и цинка, тетрахлорида углерода, тетрабромэтана, хлорного олова и других соединений.

Для поддержания устойчивости суспензии в нее добавляют глину (до 3% от массы утяжелителя) или применяют смесь порошков утяжелителей различной плотности.

Наиболее распространенными аппаратами обогащения в тяжелых средах являются барабанные, конусные, колесные и гидроциклонные сепараторы.

Обогащение в потоках на наклонных поверхностях. Эти процессы включают обогащение на концентрационных столах, а также в струйных сепараторах, шлюзах и подшлюзках, в винтовых сепараторах и шлюзах.

Обогащение на концентрационных столах характеризуется разделением минеральных

частиц по плотности в тонком слое воды, текущей по наклонной плоской деке стола, совершающей возвратно–поступательные горизонтальные движения перпендикулярно направлению движения воды.

Деки бывают трапециевидной и прямоугольной формы. На части поверхности дек в продольном направлении закрепляют параллельно располагаемые рифли (планки переменной высоты и длины), длина которых увеличивается от верхнего к нижнему краю стола — краю разгрузки легких продуктов. Пульпу разделяемого материала подают в верхний угол поверхности стола (деки). Питание деки смывной водой ведут с ее верхнего края, ниже места ввода пульпы.

Частицы разделяемого материала большей плотности оседают в межрифленных пространствах и под действием колебаний наклонной деки продвигаются вдоль рифлей, достигая нерифленой части деки, где образуют веер частиц различной плотности, удаляемых раздельно. Не оседающие частицы меньшей плотности переносятся смывным потоком через рифли; их в виде раздельных продуктов отводят с поверхности концентрационного стола.

 

 

Рис. III-7. Схема обезжелезивания кварцевого песка для производства хрусталя

 

Один из примеров роли и места концентрации на столах в технологии рекуперации твердых отходов иллюстрируется представленной на рис. Ш-7 схемой подготовки (обезжелезивания) кварцевого песка для производства хрусталя. Последовательные операции оттирки от песчинок примесей оксидов железа в шаровой мельнице, их отмывки на деке концентрационного стола и магнитной доочистки обеспечивают остаточное содержание железа в продукте менее (10—12)·10-3%.

Обогащение на винтовых сепараторах и шлюзах происходит, как и на столах, в небольшой толщины (6—15 мм) потоке пульпы разделяемых материалов, подаваемой в верхнюю часть наклонного желоба (содержание твердого в пульпе 6—40%).

Винтовые сепараторы представляют собой неподвижные вертикальные винтообразные желоба (число витков 4—6) с поверхностью специального профиля. Тяжелые частицы пульпы сосредоточиваются в желобе ближе к вертикальной оси его витков и разгружаются посредством отсекателей в соответствующие приемники. Легкие частицы концентрируются у периферийной части желоба и разгружаются в нижней части сепаратора. Желоб имеет угол наклона к горизонту, характеризуемый величиной относительного шага винта (отношением шага к диаметру), находящейся в пределах 0,4—0,6.

При максимальной крупности частиц обогащаемых материалов 0,2—8 мм и плотности извлекаемых материалов 6—7,5 г/см3 средняя производительность винтовых сепараторов диаметром 0,5—1,2 м находится в пределах 0,3—12 т/ч. Обогащение предварительно классифицированных и обесшламленных материалов характеризуется лучшими показателями.

Разновидностью винтовых сепараторов являются винтовые шлюзы, характеризующиеся более широкими желобами и меньшими наклонами днищ желобов.

Струйные сепараторы снабжены суживающимся к нижнему концу и устанавливаемым под углом 15—20° желобом или конусом. Пульпу (содержание твердого 50—60%) загружают в верхнюю часть желоба. Сокращение расстояния между стенками желоба от загрузочного конца к разгрузочному приводит к увеличению высоты потока от 1,5—2 до 7—12 мм. Частицы большей плотности концентрируются в нижних слоях потока, а меньшей плотности сосредоточиваются в верхних его слоях. Разделенные потоки частиц поступают в отдельные приемники. Производительность этих аппаратов определяется крупностью и минеральным составом обрабатываемого материала и обычно составляет 0,9—5,5 т/ч на 1 м2 рабочей площади желоба. Их можно использовать и для классификации (например, строительного песка).

Шлюзы характеризуются наличием наклонных (3—15°) лотков с укрепленными на их дне

трафаретами (бруски, уголки, профилированные коврики, панцирные сетки, ткань) для задержания тяжелых частиц подаваемой в верхнюю часть лотка пульпы перерабатываемого материала. Эти аппараты могут быть неподвижными и подвижными, глубокого (высота потока до 0,4 м для переработки материалов крупностью от 20 до 100 мм и более) и мелкого (высота потока до 0,05 м для материалов крупностью до 20 мм) заполнения. Аппараты мелкого заполнения называют подшлюзками. Легкие частицы пульпы уносятся потоком через трафареты, частицы большей плотности депонируются в межтрафаретных пространствах, после заполнения которых при прекращенной подаче пульпы производят их промывку водой с последующим смывом концентрата в приемник.

Ширина шлюзов обычно составляет 0,5—1,5 м, длина 6—20 м. Пример технологического комплекса обогащения на шлюзах представлен на рис. Ш-8.

 

 

 

Промывка. Для разрушения и удаления глинистых, песчаных и других минеральных, а также органических примесей твердых отходов часто используют процессы их промывки (отмывки), которые проводят в промывочных машинах разнообразной конструкции (гидромониторы, барабанные грохоты, бутары, вращающиеся скрубберы, корытные мойки, аппараты автоклавного и других типов). В качестве промывочного агента наиболее часто используют воду (в ряде случаев с добавками ПАВ), иногда применяют острый пар и различные растворители.

Помимо описанных гравитационных методов обогащения в практике переработки твердых отходов используют и другие, часто называемые инерционными, которые основаны на различии плотностей компонентов обрабатываемых материалов, а также их упругостей и коэффициентов трения. Некоторые из таких методов представлены на рис. Ш-9.

Флотация. В практике переработки отдельных видов твердых отходов (некоторых шламов, металлургических шлаков, рудных и нерудных компонентов отвалов и т.п.) находит применение метод их обогащения флотацией. Крупность флотируемых материалов обычно не превышает 0,5 мм. Наиболее распространенной является пенная флотация с использованием механических и пневмомеханических машин; пленочную флотацию ввиду ее низкой производительности и масляную флотацию ввиду ее дороговизны используют крайне ограниченно.

 

 

Рис. III-9. Некоторые приемы разделения смесей твердых отходов:

а, 6 — баллистической сепарацией; в — сепарацией, основанной на различии коэффициентов трения; 1 — ленточные транспортеры; 2 — роторы; 3 — пластинчатый транспортер; 4 — отражатель; ЛН — фракция легких неупругих материалов; ГУ — фракция тяжелых упругих материалов


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.)