АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Комбинированные (гибридные) системы

Читайте также:
  1. Анатомия и физиология вестибулярного анализатора, раздражители вест. Аппарата, связь ядер в.а. с др.отделами нервной системы.
  2. Бюджетное устройство и принципы построения бюджетной системы.
  3. Возможные проблемы пациентов при заболеваниях сердечно-сосудистой системы.
  4. Денежные системы и их характеристики. Элементы денежной системы.
  5. Зарубежные воспитательные системы. Вальдорфские школы Рудольфа Штейнера.
  6. Звуковосприятие, или трансформация звуковой волны в электрический потенциал в периферическом отделе слуховой системы.
  7. Имеются три состояния системы. Найти состояние с эффективным производством.
  8. Иммунитет, виды и формы. Структура иммунной системы. Факторы неспецифической защиты.
  9. Комбинированные методы
  10. Комбинированные радиационные поражения (КРП) — это поражения, для которых характерно сочетание механической и (или) термической травмы с лучевой болезнью.
  11. Комбинированные суда газовозы–химовозы

Достоинство криптосистем с открытым ключом: нет необходимости передавать значения секретных ключей.

Недостаток – низкое быстродействие (в сотни и более раз по сравнению с симметричными), связано с тем, что:

-генерация ключей основано на генерации больших простых чисел, а проверка простоты чисел занимает много процессорного времени;

-процедуры шифрования и расшифрования как возведение в степень многозначного числа, достаточно громоздки.

Комбинированный (гибридный) метод шифрования позволяет сочетать преимущества высокой секретности асимметричных криптосистем с преимуществами высокой скорости работы симметричных систем.

При этом криптосистема с открытым ключом применяется для шифрования, передачи и последующего расшифрования только секретного ключа симметричной криптосистемы. А симметричная криптосистема применяется для шифрования и передачи исходного открытого текста.

Допустим, пользователь А хочет передать сообщение М пользователю В, используя комбинированный метод. Для этого:

1. А создает (например, генерирует случайным образом) симметричный ключ, называемый сеансовым ключом КS.

2. А шифрует сообщение М на сеансовом ключе.

3. В генерирует секретный ключ и открытый ключ.

4. В передает А открытый ключ.

5. А шифрует сеансовый ключ на открытом ключе пользователя В.

6. А передает по открытому каналу связи в адрес пользователя В зашифрованное сообщение вместе с зашифрованным сеансовым ключом.

7. В расшифровывает на своем секретном ключе сеансовый ключ.

8. В с помощью полученного сеансового ключа расшифровывает сообщение М.

Т.о. при комбинированном методе шифрования применяются криптографические ключи как симметричных, так и асимметричных систем. Выбор длин ключей для каждого типа криптосистемы следует осуществлять так, чтобы злоумышленнику было одинаково трудно атаковать любой механизм защиты комбинированной системы.

Длины ключей симметричных и асимметричных криптосистем при одинаковой их криптостойкости (трудность атаки полного перебора примерно равна трудности факторизации соответствующих модулей асимметричных криптосистем).

Длина ключа симметричной системы, бит Длина ключа асимметричной системы, бит
   
   
   
   
   

Комбинированный метод допускает возможность выполнения процедуры аутентификации с использованием цифровой подписи.

Комбинированный метод шифрования является наиболее рациональным, объединяя в себе высокое быстродействие симметричного шифрования и высокую криптостойкость, гарантируемую системами с открытым ключом.

Примером гибридной криптосистемы является популярная система PGP.

 

Стеганография

Стеганография - это метод организации связи, который собственно скрывает само наличие связи. В отличие от криптографии, где неприятель точно может определить является ли передаваемое сообщение зашифрованным текстом, методы стеганографии позволяют встраивать секретные сообщения в безобидные послания так, чтобы невозможно было заподозрить существование встроенного тайного послания.

Слово "стеганография" в переводе с греческого буквально означает "тайнопись" (steganos - секрет, тайна; graphy - запись). К ней относится огромное множество секретных средств связи, таких как невидимые чернила, микрофотоснимки, условное расположение знаков, тайные каналы и средства связи на плавающих частотах и т. д.

Стеганография занимает свою нишу в обеспечении безопасности: она не заменяет, а дополняет криптографию. Сокрытие сообщения методами стеганографии значительно снижает вероятность обнаружения самого факта передачи сообщения. А если это сообщение к тому же зашифровано, то оно имеет еще один, дополнительный, уровень защиты.

Несмотря на то что стеганография как способ сокрытия секретных данных известна уже на протяжении тысячелетий, компьютерная стеганография - молодое и развивающееся направление.

При построении стегосистемы должны учитываться следующие положения:

противник имеет полное представление о стеганографической системе и деталях ее реализации. Единственной информацией, которая остается неизвестной потенциальному противнику, является ключ, с помощью которого только его держатель может установить факт присутствия и содержание скрытого сообщения;

если противник каким-то образом узнает о факте существования скрытого сообщения, это не должно позволить ему извлечь подобные сообщения в других данных до тех пор, пока ключ хранится в тайне;

потенциальный противник должен быть лишен каких-либо технических и иных преимуществ в распознавании или раскрытии содержания тайных сообщений.

Обобщенная модель стегосистемы представлена на рис..

В качестве данных может использоваться любая информация: текст, аудиоданные, изображение и т. п.

Контейнер - любая информация, предназначенная для сокрытия тайных сообщений.

Пустой контейнер - контейнер без встроенного сообщения; заполненный контейнер или стего - контейнер, содержащий встроенную информацию.

Стегоключ или просто ключ - секретный ключ, необходимый для сокрытия информации. В зависимости от количества уровней защиты (например, встраивание предварительно зашифрованного сообщения) в стегосистеме может быть один или несколько стегоключей.

По аналогии с криптографией, по типу стегоключа стегосистемы можно подразделить на два типа:

с секретным ключом;

с открытым ключом.

Любая стегосистема должна отвечать следующим требованиям:

Свойства контейнера должны быть модифицированы, чтобы изменение невозможно было выявить при визуальном контроле. Это требование определяет качество сокрытия внедряемого сообщения: для обеспечения беспрепятственного прохождения стегосообщения по каналу связи оно никоим образом не должно привлечь внимание атакующего.

Стегосообщение должно быть устойчиво к искажениям, в том числе и злонамеренным. В процессе передачи изображение (звук или другой контейнер) может претерпевать различные трансформации: уменьшаться или увеличиваться, преобразовываться в другой формат и т. д. Кроме того, оно может быть сжато, в том числе и с использованием алгоритмов сжатия с потерей данных.

Для сохранения целостности встраиваемого сообщения необходимо использование кода с исправлением ошибки.

Для повышения надежности встраиваемое сообщение должно быть продублировано.

В настоящее время можно выделить три тесно связанных между собой и имеющих одни корни направления приложения стеганографии: сокрытие данных (сообщений), цифровые водяные знаки и заголовки.

Сокрытие внедряемых данных, которые в большинстве случаев имеют большой объем, предъявляет серьезные требования к контейнеру: размер контейнера в несколько раз должен превышать размер встраиваемых данных.

Цифровые водяные знаки используются для защиты авторских или имущественных прав на цифровые изображения, фотографии или другие оцифрованные произведения искусства. Основными требованиями, которые предъявляются к таким встроенным данным, являются надежность и устойчивость к искажениям.

Цифровые водяные знаки имеют небольшой объем, однако, с учетом указанных выше требований, для их встраивания используются более сложные методы, чем для встраивания просто сообщений или заголовков.

Третье приложение, заголовки, используется в основном для маркирования изображений в больших электронных хранилищах (библиотеках) цифровых изображений, аудио- и видеофайлов.

В данном случае стеганографические методы используются не только для внедрения идентифицирующего заголовка, но и иных индивидуальных признаков файла.

Внедряемые заголовки имеют небольшой объем, а предъявляемые к ним требования минимальны: заголовки должны вносить незначительные искажения и быть устойчивы к основным геометрическим преобразованиям.

Контейнеры

При увеличении объема встраиваемых данных снижается надежность системы (при неизменности размера контейнера). Таким образом, используемый в стегосистеме контейнер накладывает ограничения на размер встраиваемых данных.

Существенное влияние на надежность стегосистемы и возможность обнаружения факта передачи скрытого сообщения оказывает выбор контейнера.

Например, опытный глаз цензора с художественным образованием легко обнаружит изменение цветовой гаммы при внедрении сообщения в репродукцию "Мадонны" Рафаэля или "Черного квадрата" Малевича.

По протяженности контейнеры можно подразделить на два типа: непрерывные (потоковые) и ограниченной (фиксированной) длины. Особенностью потокового контейнера является то, что невозможно определить его начало или конец. Более того, нет возможности узнать заранее, какими будут последующие шумовые биты, что приводит к необходимости включать скрывающие сообщение биты в поток в реальном масштабе времени, а сами скрывающие биты выбираются с помощью специального генератора, задающего расстояние между последовательными битами в потоке.

В непрерывном потоке данных самая большая трудность для получателя - определить, когда начинается скрытое сообщение. При наличии в потоковом контейнере сигналов синхронизации или границ пакета, скрытое сообщение начинается сразу после одного из них. В свою очередь, для отправителя возможны проблемы, если он не уверен в том, что поток контейнера будет достаточно долгим для размещения целого тайного сообщения.

При использовании контейнеров фиксированной длины отправитель заранее знает размер файла и может выбрать скрывающие биты в подходящей псевдослучайной последовательности. С другой стороны, контейнеры фиксированной длины, как это уже отмечалось выше, имеют ограниченный объем и иногда встраиваемое сообщение может не поместиться в файл-контейнер.

Возможны следующие варианты контейнеров:

Контейнер генерируется самой стегосистемой. Примером может служить программа MandelSteg, в которой в качестве контейнера для встраивания сообщения генерируется фрактал Мандельброта. Такой подход можно назвать конструирующей стеганографией.

Контейнер выбирается из некоторого множества контейнеров. В этом случае генерируется большое число альтернативных контейнеров, чтобы затем выбрать наиболее подходящий для сокрытия сообщения. Такой подход можно назвать селектирующей стеганографией.

Контейнер поступает извне. В данном случае отсутствует возможность выбора контейнера и для сокрытия сообщения берется первый попавшийся контейнер, не всегда подходящий к встраиваемому сообщению. Назовем это безальтернативной стеганографией.

Методы сокрытия информации

По сути, компьютерная стеганография базируется на двух принципах. Первый заключается в том, что файлы, содержащие оцифрованное изображение или звук, могут быть до некоторой степени видоизменены без потери функциональности, в отличие от других типов данных, требующих абсолютной точности. Второй принцип состоит в неспособности органов чувств человека различить незначительные изменения в цвете изображения или качестве звука, что особенно легко использовать применительно к объекту, несущему избыточную информацию, будь то 16-битный звук, 8-битное или еще лучше 24-битное изображение.

Одним из наиболее распространенных стеганографических методов, использующих психофизические особенности субъекта (то есть человека), является метод замены младших битов или LSB-метод (Least Significant Bits). Его популярность обусловлена функциональной простотой, большой емкостью и хорошей защищенностью от стеганоанализа.

Суть метода состоит в замене нескольких младших битов в байтах данных. Он применяется в графических файлах, использующих для формирования цвета пикселя значения некоторых составляющих (например, основных цветов - красного, зеленого и синего), или же в звуковых файлах, использующих для формирования звука значения дискретизированных амплитуд. Обычно замене подвергаются от 1 до 4 младших разрядов. Следует учесть, что при оцифровке изображения или звука всегда существует так называемая погрешность дискретизации, которая обычно находится на уровне младшего значащего бита. Это значит, что фактически неизвестно, что будет стоять в младшем значащем разряде цифрового представления данного цвета, и, следовательно, при замене лишь самого младшего значащего бита, говорить о каком-либо искажении изображения или звука бессмысленно. При замене самого младшего значащего бита можно говорить о том, что данный метод имеет абсолютную защищенность от стеганоанализа. Однако такой метод имеет весьма малую емкость, порядка 10 % от объема файла-контейнера, поэтому на практике используют замену более одного бита.

Другим популярным методом встраивания сообщений является использование особенностей форматов данных, использующих сжатие с потерей данных (например JPEG). Этот метод (в отличии от LSB) более стоек к геометрическим преобразованиям и обнаружению канала передачи, так как имеется возможность в широком диапазоне варьировать качество сжатого изображения, что делает невозможным определение происхождения искажения.

Для встраивания цифровых водяных знаков используются более сложные методы. В современных системах формирования цифровых водяных знаков используется принцип встраивания метки, являющейся узкополосным сигналом, в широком диапазоне частот маркируемого изображения.

В настоящее время компьютерная стеганография продолжает развиваться: формируется теоретическая база, ведется разработка новых, более стойких методов встраивания сообщений. Среди основных причин наблюдающегося всплеска интереса к стеганографии можно выделить принятые в ряде стран ограничения на использование сильной криптографии, а также проблему защиты авторских прав на художественные произведения в цифровых глобальных сетях. Поэтому в ближайшее время можно ожидать новых публикаций и разработок в этой области.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)