АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методы гибридизации соматических клеток

Читайте также:
  1. I. Методы выбора инновационной политики
  2. II. Вывод и анализ кинетических уравнений 0-, 1-, 2-ого порядков. Методы определения порядка реакции
  3. II. Методы прогнозирования и поиска идей
  4. S:Статистические методы анализа качества разработаны как
  5. V. Кибернетические (или постбиологические) методы достижения бессмертия (искусственная жизнь “в силиконе”)
  6. V. Правила и методы исследований при трансфузии (переливании) консервированной донорской крови и эритроцитсодержащих компонентов
  7. V1: Радиометрические методы контроля
  8. V1: Хроматографические методы контроля качества продовольственных товаров
  9. V1: Цветометрические методы контроля качества
  10. А) вследствие тяжелых соматических заболеваний
  11. Абсолютная проницаемость. Методы получения. Способ задания.
  12. Административные методы управления

Соматические клетки содержат весь объем генетической информации. Это дает возможность изучать многие вопросы генетики человека, которые невозможно исследовать на целом организме. Благодаря методам генетики соматических клеток человек как бы стал одним из экспериментальных объектов. Чаще всего используют клетки соединительной ткани (фибробласты) и лимфоциты крови. культивирование клеток вне организма позволяет получить достаточное количество материала для исследования. что не всегда возможно взять у человека без ущерба для здоровья.

Находящиеся в культуре клетки какой-либо ткани можно подвергать изучению различными методами: цитологическим, биохимическим, иммунологическим. такое исследование может быть в ряде случаев более точным, чем на уровне целостного организма, так как метаболические процессы удается выделить из сложной цепи взаимосвязанных реакций. происходящих в организме.

В 1960 г. французский биолог Ж. Барский, выращивая вне организма в культуре ткани клетки двух линий мышей, обнаружил, что некоторые клетки по своим морфологическим и биохимическим признакам были промежуточными между исходными родительскими клетками. Эти клетки оказались гибридными. Такое спонтанное слияние клеток в культуре ткани происходит довольно редко. В дальнейшем оказалось, что частота гибридизации соматических клеток повышается при введении в культуру клеток РНК-содержащего вируса парагриппа Сендай, который как вообще все вирусы, изменяет свойства клеточных мембран и делает возможным слияние клеток. Под влиянием такого вируса в смешанной культуре двух типов клеток образуются клетки, содержащие в общей цитоплазме ядра обеих родительских клеток – гетерокарионы. После митоза и последующего разделения цитоплазмы из двуядерного гетерокариона образуются две одноядерные клетки, каждая из которых представляет собой синкарион – настоящую гибридную клетку, имеющую хромосомы обеих родительских клеток.

В зависимости от целей анализа исследование проводят на гетерокарионах или синкарионах. Синкарионы обычно удается получить при гибридизации в пределах класса. Это истинные гибридные клетки, так как в них произошло объединение двух геномов. Применение метода генетики соматических клеток дает возможность изучать механизмы первичного действия генов и взаимодействия генов.

 

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.

В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьёзным патологиям.

 


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)