АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Гетероскедастичность в уравнениях множественной регрессии, ее признаки и последствия

Читайте также:
  1. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  2. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  3. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  4. Безработ: определение, типы, естественный уровень, социально-экономические последствия.
  5. Безработица, ее причины и формы, последствия.
  6. Безработица: её сущность, виды и социально-экономические последствия.
  7. Безработица: понятие, типы и социально-экономические последствия.
  8. Безработица: понятие, типы и социально-экономические последствия.
  9. Безработица: сущность, причины, формы и последствия.
  10. В-83 Правоотношения: понятие, признаки и виды?
  11. В-93 Правонарушение: понятие, признаки и виды?
  12. В-95 Правовое гос-во: понятие и признаки?

В соответствии со второй предпосылкой теоремы Гаусса-Маркова нужно соблюдение условия гомоскедастичности, или однородности, или одинаковости дисперсий случайных возмущений во всех наблюдениях: . Если это условие не соблюдается, то имеет место гетероскедастичность. Распределение u для каждого наблюдения имеет нормальное распределение и нулевое ожидание, но дисперсия распределений различна. Последствия нарушения условия гомоскедастичности случайных возмущений: 1. Потеря эффективности оценок коэффициентов регрессии, т.е. можно найти другие, отличные от МНК и более эффективные оценки. 2. Смещенность стандартных ошибок коэффициентов в связи с некорректностью процедур их оценки. Это, в свою очередь, может привести к некорректности результатов тестирования статистической значимости параметров линейной модели.

Подход к решению проблемы устранения гетероскедастичности сводится к искусственному преобразованию спецификации модели таким образом, чтобы условие гомоскедастичности выполнялось тождественно. Пусть спецификация модели: Yt=a0+a1x1t+a2x2t+a3x3t+ut . Способ 1. Частный случай, когда известны дисперсии случайных возмущений в каждом наблюдении: Делится каждое уравнение наблюдений на свое σ(ut) и получается: Тогда дисперсия случайного возмущения в каждом уравнении наблюдений есть: . Модель в каждом уравнении наблюдения имеет одинаковые дисперсии случайного возмущения равные 1. Недостаток способа – оценить σ(ut) на практике не возможно! Способ 2. Предполагаем, что σ(ut)=λxkt, где xkt регрессор «вызывающий» гетероскедастичность. Пусть для примера это регрессор x2t. Уравнение делится на значение этого регрессора:.Дисперсия случайного возмущения при этом есть: . Уравнения модели имеют постоянную дисперсию случайного возмущения равную λ2. Если регрессоров, приводящих к гетероскедастичности, несколько, то делается предположение:. Обе части модели делятся на величину Σ│xj│: . Тогда дисперсия случайного возмущения полученной модели есть: . Способ 3. Взвешенный метод наименьших квадратов: Предполагается, что дисперсию случайного возмущения можно представить в виде:

где: – дисперсия единицы веса, λ – заданная константа, например ±0.5; ±1; ±2. Вес случайного остатка вычисляется по правилу: . Если в схеме Гаусса-Маркова не выполняется предпосылка о гомоскедастичности случайных возмущений, то наилучшей линейной процедурой оценки параметров модели является: . где: Р матрица ковариаций случайных возмущений в уравнения наблюдений:




1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)