АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Выделительные ткани

Читайте также:
  1. Биоэнерготренинг и разрастания соединительной ткани.
  2. Выделительные ткани
  3. Гормональная регуляция метаболизма жировой ткани.
  4. Другие типы клеток рыхлой волокнистой соединительной ткани.
  5. Используйте только НАТУРАЛЬНЫЕ ткани.
  6. Классификация соединительной ткани.
  7. Красная волчанка (lupus erythematodes; син. эритематоз) – основное заболевание из группы диффузных болезней соединительной ткани.
  8. Меристематические ткани.
  9. Механизмы поражения ионизирующим излучением живой ткани.
  10. Миелиновые и безмиелиновые волокна нервной ткани.
  11. Мышечные ткани.

Растения не имеют специализированных органов выделения, но все же экскреторные вещества у них так или иначе удаляются из организма или накапливаются в особых вместилищах. Поэтому выделительные ткани можно разделить на две группы: внутренней и внешней секреции. К первым относят млечники, одиночные выделительные клетки, схизогенные и лизигенные вместилища. Продукты внутренней секреции - дубильные вещества, смолы, эфирные масла и др. Ко вторым относят железистые волоски и желёзки, расположенные на поверхности органов. Продукты внешней секреции - эфирные масла, нектар, вода и др.

Млечники - это живые клетки с цитоплазмой, множеством ядер и вакуолью, заполненной млечным соком (латексом). Стенка их состоит из целлюлозы. Различают два вида млечников: членистые и нечленистые. Членистые млечники образуются так же, как и сосуды, в результате разрушения поперечных стенок у вертикального ряда клеток, нечленистые возникают в результате разрастания специальных клеток зародыша. Это гигантские цилиндрические или разветвленные клетки. Млечники располагаются только во флоэме, или пронизывают весь орган (стебель, корень, лист). Они выполняют не только выделительную, но также проводящую и запасающую функции. Проводящая функция осуществляется тогда, когда млечники соединяют места синтеза органических веществ, например листья, с местами их потребления. О выделительной и запасающей функциях млечников можно судить по составу латекса. У разных растений состав латекса очень разнообразен. Из экскреторных веществ он часто содержит каучук, танниды, алкалоиды, смолы и др., из запасных - крахмал, сахара, белки, масло и др. Иногда в латексе имеются ферменты. Цвет латекса белый или оранжево-красный. Млечники присущи лишь некоторым группам растений, например части сложноцветных, маковым, молочайным и др.

Выделительные клетки рассеяны среди клеток других тканей. По мере накопления экскрета протопласт их отмирает, а на стенку клетки изнутри откладывается суберин, изолирующий ядовитые вещества от окружающих клеток. Выделительные клетки имеются в листьях чая, лавра, в корневищах бадана и др.

Схизогенные и лизигенные вместилища служат для накопления и длительного хранения многих конечных продуктов жизнедеятельности, выключенных из обмена веществ. Они имеют округлую или каналовидную форму и различную величину.

Схизогенные вместилища формируются из межклетников, возникающих в результате раздвигания клеток. Прилегающие к вместилищу живые клетки становятся эпителиальными и выделяют в полость вместилища экскреторные вещества. Схизогенные вместилища бывают у весьма разнообразных групп растений, но особенно характерны для голосеменных, у которых в смоляных каналах накапливается бальзам - раствор смол в эфирных маслах.

Лизигенные вместилища образуются в результате растворения группы клеток, заполненных экскреторными веществами. Они характерны для цитрусовых.

Железистые волоски образуются из клеток эпидермы. В них накапливаются и выводятся из тела растения во внешнюю среду разнообразные экскреторные вещества в газообразном, жидком и твердом виде. По строению они очень разнообразны, но сохраняют постоянство структуры для каждой группы растений.

Нектарии, или нектарники - желёзки, выделяющие на поверхность органа раствор углеводов. Сахаристые выделения нектариев цветка привлекают насекомых-опылителей.

Гидатоды - это желёзки, выделяющие наружу через устьичные аппараты воду. Замыкающие клетки таких аппаратов лишены подвижности, устьичные щели постоянно открыты. Они сосредоточены по краю листа, преимущественно на верхушках зубчиков.

Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».

 

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.

 

Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.

 

Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм. Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК. У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны. Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.

Ткани растений – это группы клеток, которые в определенном порядке располагаются в теле растения и предназначены для выполнения различных функций в жизнедеятельности растения. Все многоклеточные организмы имеют клетки различной структуры, совокупности которых являются тканями. Степень дифференцировки клеток тканей растений возрастает от низших растений к высшим. В отличие от тканей животных, у растений процесс образования тканей из первичных клеток можно наблюдать не на зародыше, а в растущих частях тела растения. Первичные клетки растения однородны, имеют примерно равные размеры и пропорции, состоят из протоплазмы и ядра. Из этих клеток формируется первоначальная меристема. Она в свою очередь позднее делится на составляющие: первый внешний слой (протодерм), из которого образуется кожица; срединный слой (прокамбий), являющийся предшественником сосудисто-волокнистых пучков; слой основной меристемы, который находится между протодермом и прокамбием и называется основной паренхимой или основной тканью растений, из нее появляется сердцевина, часть проводящей паренхимы. Это образовательная ткань растений.

О том, как проходит сосудисто-волокнистый пучок, можно судить по нервацифи листьев. Образуется характерная сеть, причем пучки листьев соединены с пучками стеблей, которые формируют разветвленную систему, переходящую в корень. Это проводящая ткань растения. Если изучать строение этой системы, можно увидеть, что образуется сплошной скелет во всем теле растения. Он состоит из правильно связанных друг с другом пучков, хотя они соединены по-разному у разных растений. Скелет растения из проводящих волокон, по которым перемещаются питательные вещества от листьев к корню и наоборот, представляет собой механическую ткань растения.

Внутренняя структура корня относительно проста по сравнению со структурой стебля. Это связано прежде всего с отсутствием листьев и соответственно узлов и междоузлий. Вследствие этого в расположении тканей на разных уровнях наблюдаются сравнительно небольшие различия.

Уже в самом начале зоны роста масса клеток дифференцируется на три зоны: эпиблему, первичную кору и осевой цилиндр, который может быть сплошным или полым.

Снаружи молодые корневые окончания покрыты эпиблемой. Эпиблема дифференцируется из самого наружного слоя верхушечной меристемы, называемого дерматогеном. Она достигает полного развития в зоне поглощения, где ее клетки образуют корневые волоски. В зоне проведения эпиблема довольно быстро слущивается. Количество корневых волосков иногда весьма значительно. В одном из исследований сообщалось, что у четырехмесячного растения риса примерно 14 млрд. корневых волосков с суммарной длиной более 10000 км и площадью поглощения 40 кв.м.

Первичная кора обычно дифференцируется из периферийного отдела верхушечной меристемы, лежащего глубжедерматогена, - периблемы. Осевой (центральный) цилиндр формируется из внутренней части меристемы - плеромы. Здесь, используя микроскоп с большим увеличением, уже удается заметить клетки прокамбия.

Первичная кора, на которую приходится основная масса ткани молодого корня, образована паренхимными клетками и обычно дифференцируется на уровне зоны растяжения. Она рыхлая и имеет систему межклетников, по которой вдоль оси корня циркулируют газы, необходимые для дыхания и поддержки обмена веществ. У болотных и водных растений межклетники особенно обширны и вся коровая часть оказывается занятой аэренхимой. Кроме того, кора является той частью корня, через которую активно проходит радиальный (ближний) транспорт воды и растворенных солей отэпиблемы к осевому цилиндру.

В тканях коры осуществляется активный синтез метаболитов и откладываются запасные питательные вещества. Наружные клетки первичной коры, лежащие непосредственно под эпиблемой, называются экзодермой. В зоне проведения после слущивания эпиблемы экзодерма оказывается снаружи, может видоизменяться (опробковевать) и выполнять функцию защитной покровной ткани. Основная масса первичной коры (мезодерма) образована паренхимными клетками. Самый внутренний слой коры - эндодерма. Она диффенцируется в корне на уровне начала зоны всасывания. В отличие от стебля, в корне клетки эндодермы заметно отличаются морфологически от прочих клеток. Это связано с особой функциейэндодермы, выполняющей роль барьера, который контролирует передвижение веществ из коры в осевой цилиндр и обратно. На ранних этапах развития эндодерма состоит из живых, тонкостенных клеток. Позднее ее клетки приобретают некоторые характерные особенности. В частности, на их радиальных стенках появляются особые утолщения - пояски Каспари, с помощью которых перекрывается передвижение растворов вдоль клеточных стенок (рис. 66).

У многих двудольных и голосеменных растений образованием поясков Каспари обычно заканчивается дифференциацияэндодермы. У однодольных в клетках эндодермы могут происходить дальнейшие изменения. В частности, на внутренней поверхности первичных оболочек клеток откладывается суберин и далее толстая вторичная целлюлозная оболочка, которая со временем одревесневает. Наружные стенки почти не утолщаются. Среди толстостенных отмирающих клетокэндодермы встречаются живые клетки с тонкими неодревесневшими стенками, несущие только пояски Каспари. Это пропускные клетки; через них осуществляется физиологическая связь между первичной корой и осевым цилиндром (рис. 67).

Осевой цилиндр (стела) начинает дифференцироваться в зоне роста, вплотную к зоне деления. Формирование осевого цилиндра начинается с образования наружного его слоя - перицикла. Перицикл представляет собой образовательную ткань, длительно сохраняющую меристематическую активность. Перицикл играет роль "корнеродного" слоя, так как в нем закладываются боковые корни, которые, таким образом, имеют эндогенное происхождение. В перицикле корня некоторых растений возникают также зачатки придаточных почек. У двудольных он участвует во вторичном утолщении корня, отчасти образуя камбий и феллоген. Под перициклом закладываются клетки боковой меристемы - прокамбия, дающие начало первичной флоэме, а несколько позднее - первичной ксилеме. Элементы флоэмы и ксилемы закладываются по кругу, чередуясь друг с другом, и развиваются центростремительно, т.е. по направлению к центру корня. Однако масса элементов ксилемы дифференцируется быстрее, обгоняет флоэму и занимает центр корня. В конечном итоге на поперечном сечении корня тяж ксилемы напоминает очертания звезды с различным числом лучей, между которыми располагаются участки флоэмы. Сформировавшаяся структура проводящей ткани получила название радиального проводящего пучка.

У большинства двудольных "звезда" ксилемы бывает ди-, три-, тетра- или пентархной, т.е. имеет соответственно 2, 3, 4 или 5 лучей. У однодольных она, как правило, многолучевая, или полиархная (рис. 68).

Сердцевина нетипична для корня, но иногда заметна в центре в виде небольшого участка механической ткани или тонкостенных клеток, возникающих из прокамбия.

У большинства семенных растений боковые корни берут начало в перицикле. По мере увеличения размеров молодого бокового корня он проходит через первичную кору, возможно, секретируя при этом ферменты, разрушающие коровые клетки. Уже на ранних стадиях эндогенного развития корневой зачаток формирует корневой чехлик, апикальную и первичные меристемы. Центральные цилиндры главного и молодого боков корней первоначально не связаны между собой, но позднее соединяются за счет дифференциации в элементы ксилемы и флоэмы лежащих между нимипаренхимных клеток.

Описанное строение корня получило название первичного (рис. 67). У однодольных и папоротников первичная структура корня сохраняется в течение всей жизни и вторичные ткани не возникают.

Корни некоторых строений имеют склонность к метаморфозу.

Видоизменения корней:

1. Корнеплод — утолщённый главный корень. В образовании корнеплода участвуют главный корень и нижняя часть стебля. Большинство корнеплодных растений двулетние. Корнеплоды состоят в основном из запасающей основной ткани (репа, морковь, петрушка).

2. Корневые клубни (корневые шишки) образуются в результате утолщения боковых и придаточных корней. С их помощью растение цветёт быстрее.

3. Корни-зацепки — своеобразные придаточные корни. При помощи этих корней растение «приклеивается» к любой опоре.

4. Ходульные корни — выполняют роль опоры.

5. Досковидные корни представляют собой боковые корни, проходящие у самой поверхности почвы или над ней, образующие треугольные вертикальные выросты, примыкающие к стволу. Характерны для крупных деревьев тропического дождевого леса.

6. Воздушные корни — боковые корни, растут в надземной части. Поглощают дождевую воду и кислород из воздуха. Образуются у многих тропических растений в условиях недостатка минеральных солей в почве тропического леса.

7. Микориза — сожительство корней высших растений с гифами грибов. При таком взаимовыгодном сожительстве, называемом симбиозом, растение получает от гриба воду с растворёнными в ней питательными веществами, а гриб — органические вещества. Микориза характерна для корней многих высших растений, особенно древесных. Грибные гифы, оплетающие толстые одревесневшие корни деревьев и кустарников, выполняют функции корневых волосков.

8. Бактериальные клубеньки на корнях высших растений — сожительство высших растений с азотфиксирующими бактериями — представляют собой видоизменённые боковые корни, приспособленные к симбиозу с бактериями. Бактерии проникают через корневые волоски внутрь молодых корней и вызывают у них образование клубеньков. При таком симбиотическом сожительстве бактерии переводят азот, содержащийся в воздухе, в минеральную форму, доступную для растений. А растения, в свою очередь, предоставляют бактериям особое местообитание, в котором отсутствует конкуренция с другими видами почвенных бактерий. Бактерии также используют вещества, находящиеся в корнях высшего растения. Чаще других бактериальные клубеньки образуются на корнях растений семейства Бобовые. В связи с этой особенностью семена бобовых богаты белком, а представителей семейства широко используют в севообороте для обогащения почвы азотом.

9. Дыхательные корни — у тропических растений — выполняют функцию дополнительного дыхания.


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)