АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Энергетика экосистем

Читайте также:
  1. Абиотические компоненты экосистемы.
  2. Агроценозы и естественные экосистемы
  3. Биологическое разнообразие как основа устойчивости экосистем
  4. Биотические компоненты экосистемы
  5. БІОГЕОЦЕНОЗ І ЭКОСИСТЕМА
  6. Глава 5 . Энергетика химических процессов
  7. Гомеостаз экосистемы
  8. Динамика и развитие экосистем. Сукцессии
  9. Законы организации экосистем
  10. Изменение масштабов хозяйственной деятельности и глобальной экосистемы
  11. Круговорот веществ в экосистеме.
  12. Лекция №8 (Тема 8) Биоэнергетика. Энергетический обмен.

Живые организмы, входящие в экосистемы, для своего су­ществования должны постоянно пополнять и расходовать энер­гию. Растения, как известно, способны запасать энергию в хи­мических связях в процессе фотосинтеза или хемосинтеза. При фотосинтезе связывается только энергия с определенными дли­нами волн — 380—710 нм. Эту энергию называют фотосинтетически активной радиацией (ФАР). Она по длинам волн близка к видимой части спектра. На эту радиацию обычно приходится около 40% общей солнечной радиации, достигающей земной поверхности. Остальная часть спектра относится либо к более короткой (ультрафиолетовой), либо к более длинной (инфра­красной) радиации. С последней обычно связан тепловой эф­фект.

Растения в процессе фотосинтеза связывают лишь неболь­шую часть солнечной радиации. Даже по отношению к фотосинтетически активной — это в среднем для Земного шара ме­нее 1%. Только наиболее продуктивные экосистемы, такие, как плантации сахарного тростника, тропические леса, посевы ку­курузы в оптимальных» условиях могут связывать до 3—5% ФАР. В опытах с кондиционированными условиями по всем факто­рам среды за короткие периоды времени удавалось достичь эф­фективности фотосинтеза по усвоению солнечной энергии по­рядка 8—10% ФАР.

Растения являются первичными поставщиками энергии для всех других организмов в цепях питания. Существуют опреде­ленные закономерности перехода энергии с одного трофичес­кого уровня на другой вместе с потребляемой пищей. Основная часть энергии, усвоенной консументом с пищей, расходуется на его жизнеобеспечение (движение, поддержание температуры тела и т.п.). Эту часть энергии рассматривают как траты на дыхание, с которым в конечном счете связаны все возможности ее высво­бождения из химических связей органического вещества. Часть энергии переходит в тело организма потребителя, увеличивая его массу. Некоторая доля пищи не усваивается организмом, а следовательно, из нее не высвобождается и энергия. В последу­ющем она высвобождается из экскрементов, но другими орга­низмами, которые потребляют их в пищу.

Количество энергии, расходуемой организмами на различ­ные цели, неоднозначно. В периоды интенсивной жизнедея­тельности взрослого организма в теле его может совершенно не фиксироваться энергия. Наоборот, траты ее в ряде случаев пре­вышают поступление (организм теряет вес). В то же время в периоды интенсивного роста организмов, особенно в периоды размножения (беременности), в теле фиксируется значительное количество энергии.



Выделение энергии с экскрементами у плотоядных живот­ных (например, хищников) невелико, у травоядных оно более значительно, а гусеницы некоторых насекомых, питающиеся растениями, выделяют с экскрементами до 70% энергии. Одна­ко при всем разнообразии расходов энергии в среднем макси­мальны траты на дыхание, которые в сумме с неусвоенной пи­щей составляют около 90% от потребленной. Поэтому переход энергии с одного трофического уровня на другой в среднем при­нимается близким к 10% от энергии, потребленной с пищей. Эта закономерность рассматривается обычно как"правило де­сяти процентов".

Данное правило надо оценивать как относительное, ориен­тировочное. Вместе с тем из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4—5. Пройдя через них, практически вся энергия оказывается рассе­янной.

Закономерности потока и рассеивания энергии имеют важ­ные в практическом отношении следствия. Во-первых, с энер­гетической точки зрения крайне нецелесообразно потребление животной продукции, особенно с высоких уровней цепей пита­ния. Образование этой продукции связано с большими потеря­ми (рассеиванием) энергии. Особенно велики потери энергии при переходе с первого трофического уровня на второй, от рас­тений к травоядным животным.

Часто в экологической литературе рассматривается в каче­стве примера цепь питания: люцерна — телята — мальчик. По­казано, что если бы мальчик весом 48 кг питался только теля­тиной, то за год ему потребовалось бы для обеспечения жизне­деятельности 4,5 теленка, для питания которых, в свою очередь, необходим урожай люцерны с площади 4 га весом 8211 кг. Тако­ва энергетическая цена животной пищи.

‡агрузка...

Во-вторых, чтобы сократить вероятность дефицита продук­тов питания для интенсивно возрастающей численности насе­ления (по закономерности близкой к экспоненте), надо, чтобы в рационе людей больший удельный вес занимала растительная пища. Энергетически идеально — вегетарианство.

В-третьих, для увеличения КПД использования пищи при получении животноводческой продукции в условиях культурно­го хозяйства очень важно уменьшить основную статью нераци­онального расходования энергии — ее траты на дыхание. Это возможно за счет поддержания оптимального температурного режима в животноводческих помещениях, ограничения подвижности животных и, естественно, сбалансированности кормово­го рациона по различным элементам питания, а также примене­ния различных биотехнических приемов (умеренные добавки сти­муляторов роста, веществ, способствующих улучшению аппети­та и т.п.).

Споры о допустимо возможной численности населения с точки зрения обеспечения питанием в значительной мере отно­сительны, если они не учитывают, какой в среднем удельный вес в рационе отводится животной и растительной пище. Если исходить из рациона питания зажиточной части населения, по­требляющей мяса 80—100 кг в год на одного человека, то явно невозможно обеспечение таким рационом современной числен­ности населения Земли (около 5,5 млрд. человек). Если же исхо­дить из необходимости обеспечения минимальных потребнос­тей жизнедеятельности организма и при настоящем производ­стве продуктов питания, возможно исключить голод и, кроме того, прокормить на 2—3 миллиарда населения больше совре­менного. Для этого требует решения вопрос более сбалансиро­ванного распределения продуктов питания. Переход на вегета­рианство и тем более расширения ассортимента растений, ис­пользуемых в пищу, может обеспечить жизнедеятельность (с энер­гетической точки зрения) количеству населения в 2—3 раза боль­ше современной численности. Ясно, однако, что при этом оста­нутся нерешенными многие медико-биологические проблемы здоровья и долголетия, а также допустимые пределы антропогенных нагрузок на экосистемы и биосферу в целом.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |


При использовании материала, поставите ссылку на Студалл.Орг (0.016 сек.)