АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Эксцесс распределения

Читайте также:
  1. Алгоритм открытого распределения ключей Диффи - Хеллмана.
  2. Анализ распределения и использования чистой прибыли
  3. Анализ распределения чистой прибыли
  4. Аукционный порядок распределения земельных участков.
  5. ВИДЫ ЭМПИРИЧЕСКИХ графикОВ распределения
  6. Вопрос 1 Числовые характеристики статистического распределения
  7. Вопрос 2 Доверительный интервал для нормального распределения.
  8. Вопрос 2. Построение доверительного интервала при неизвестном законе генерального распределения.
  9. Выбор канала распределения. Факторы, влияющие на выбор канала распределения.. Пример выбора канала распределения.
  10. Выборочная функция распределения
  11. Генерация случайных чисел по различным законам распределения
  12. Графическое изображение рядов распределения.

Кроме показателей, рассмотренных выше, обобщающей характеристикой вариации в однородной совокупности служит определенный порядок в изменении частот распределения в соответствии с изменениями величины изучаемого признака, называемый закономерностью распределения.

Характер (тип) закономерности распределения может быть выявлен путем построения вариационного ряда на основании большого объема наблюдений, а также такого выбора числа групп и величины интегралов, при котором наиболее отчетливо могла бы проявиться закономерность.

Анализ вариационных рядов предполагает выявление характера распределения (как результата действия механизма вариации), установление функции распределения, проверку соответствия эмпирического распределения теоретическому.

Эмпирическое распределение, полученное на основе данных наблюдения, графически изображается эмпирической кривой распределения с помощью полигона.

На практике встречаются различные типы распределений, среди которых можно выделить симметричные и асимметричные, одновершинные и многовершинные.

Установить тип распределения, означает выразить механизм формирования закономерности в аналитической форме. Многим явлениям и их признакам свойственны характерные формы распределения, которые аппроксимируются соответствующими кривыми. При всем многообразии форм распределения наибольшее распространение в качестве теоретических получили нормальное распределение, распределение Пауссона, биноминальное распределение и др.

Особое место в изучении вариации принадлежит нормальному закону, благодаря его математическим свойствам. Для нормального закона выполняется правило трех сигм, по которому вариация индивидуальных значений признака находится в пределах от величины средней. При этом в границах находится около 70% всех единиц, а в пределах — 95%.

Оценка соответствия эмпирического и теоретического распределений производится с помощью критерие

36.Выборочное наблюдение в статистики.Выборочное наблюдение относится к разновидности несплошного наблюдения. Оно охватывает отобранную часть единиц генеральной совокупности. Цель выборочного наблюдения - по отобранной части единиц дать характеристику всей совокупности единиц. Чтобы отобранная часть была репрезентативна (т.е. представляла всю совокупность единиц), выборочное наблюдение должно быть специально организовано. Следовательно, в отличие от генеральной совокупности, представляющей всю совокупность исследуемых единиц, выборочная совокупность представляет ту часть единиц генеральной совокупности, которая является объектом непосредственного наблюдения.



По понятным причинам выборочный метод может широко использоваться органами государственной статистики. Он позволяет при значительной экономии средств и затрат получать необходимую достоверную информацию. Гарантия репрезентативности обеспечивается применением научно обоснованных способов отбора единиц, которые подлежат обследованию.

Следует сразу же иметь в виду, что при сопоставлении показателей по результатам выборочного исследования с характеристиками для всей генеральной совокупности могут иметь место отклонения. Величина этих отклонений называется ошибкой наблюдения, которая может быть или ошибкой регистрации(несовершенство технических условий), или ошибкой репрезентативности (случайное или систематическое нарушение правил при отборе единиц).

В статистике приняты следующие условные обозначения:

N - объем генеральной совокупности;

п - объем выборочной совокупности;

- средняя в генеральной совокупности;

- средняя в выборочной совокупности;

р - доля единиц в генеральной совокупности;

w - доля единиц в выборочной совокупности;

- генеральная дисперсия;

S2 - выборочная дисперсия;

- среднее квадратическое отклонение признака в генеральной совокупности;

S - среднее квадратическое отклонение признака в выборочной совокупности.

37.Статистическое наблюдение связи между явлениями

Виды и формы связей
Существуют два вида связи: функциональная и корреляционная, которые обусловлены двумя типами закономерности: динамической и статистической.[1]

При функциональной зависимости величине факторного признака строго соответствует одно или несколько значений другой величины (функции). Взаимосвязанные признаки подразделяются на факторные (под их воздействием изменяются другие, зависящие от них признаки) и результативные.

‡агрузка...

При функциональной связи изменение результативного признака всецело зависит от изменения факторного признака :

Функциональные связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины, и каждому значению признака-фактора соответствуют вполне определенные значения результативного признака.

В различных процессах, характеризующихся статистическим закономерностями, нет строгой зависимости между причиной и результатом, и обычно не предоставляется возможным выявить строгую зависимость явлений от факторов, потому что закономерности складываются под влиянием множества причин и условий.

При корреляционной связи изменение результативного признака не всецело зависит от факторного признака , а лишь частично, так как возможно влияние прочих факторов : .

Корреляционная связь является свободной, неполной и неточной связью. Например, себестоимость величины продукции зависит от уровня производительности труда: чем выше производительность труда, тем ниже себестоимость. Но себестоимость зависит также и от ряда других факторов: стоимости сырья и материалов, топлива, электроэнергии, их расхода на единицу продукции, цеховых и общезаводских расходов и т.д. Поэтому нельзя утверждать, что при повышении производительности труда, допустим, на 10% себестоимость снизится также на 10%. Может случиться, что, несмотря на рост производительности труда, себестоимость не только не снизится, но даже несколько повысится, если на нее окажут более сильное влияние действующие в обратном

Корреляционная зависимость проявляется только в средних величинах и выражает соотношение между ними в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании или убывании другой.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной.

Для того, чтобы установить, есть ли зависимость между величинами, используются многообразные статистические методы, позволяющие определить, во-первых — какие связи; во-вторых — тесноту связи (в одном случае она сильная, устойчивая, в другом — слабая); в-третьих —форму связи (т.е. формулу, связывающую величину и ).[2]

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых, наоборот, рост факторного признака сопровождается уменьшением результативного. Такие связи также можно назвать соответственно положительными и отрицательными.

По аналитическому выражению корреляционная связь может быть примолинейной и криволинейной. Прямолинейной называется связь, когда величина явления изменяется приблизительно равномерно в соответствии с изменением величины влияющего фактора. Математически прямолинейная связь может быть выражена уравнением прямой: .

Если происходит неравномерное изменение явления в связи с изменением величины влияющего фактора, то такая связь называется криволинейной. Математически криволинейная зависимость может быть выражена уравнением криволинейной связи (уравнение параболы, показательная, степенная, логарифмическая функции и другие).[3]

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |


При использовании материала, поставите ссылку на Студалл.Орг (0.008 сек.)